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ABSTRACT: The exchange−correlation (XC) local density approximation (LDA) is
the original density functional used to investigate the electronic structure of molecules
and solids within the formulation of Kohn and Sham. The LDA is fundamental for the
development of density-functional approximations. In this work we consider the
generalized Kohn−Sham (GKS) theory of hybrid functionals. The GKS formalism is an
extension of the Kohn−Sham theory for electronic ground states and leads to a vast set
of alternative density functionals, which can be estimated by the LDA and related
methods. Herein we study auxiliary electronic systems with parametrized interactions
and derive (i) a set of exact equations relating the GKS XC energies in the parameter
space and (ii) a formal relation between the parameters and the standard XC derivative discontinuity. In view of the new results
and previously reported findings, we discuss why the inclusion of Fock exchange, and its long-range-corrected form (in the
ground-state calculations and in linear-response Kohn−Sham equations), dominate over the generalized gradient corrections to
enhance the quality of the fundamental gap and to enhance excitation-energy estimations. As an example, we show that the
adiabatic CAM-LDA0 (a functional with 1/4 global and 1/2 long-range Hartree−Fock interaction, respectively, a range
separation factor of 1/3, and pure LDA exchange and correlation) works for electronic excitations as well as the adiabatic CAM-
B3LYP functional.

■ INTRODUCTION

Calculations based on the theory of density functionals are
customary in the study of electronic properties of materials.
Unfortunately, the number of density-functional approxima-
tions grows, and grows, up to the point where the user
(including the authors of this work) might be unsure about
which functional should be used and why. Modern functionals
are usually parametrized combinations of various objects
including orbitals, gradients of the electronic and orbital
densities, attenuated electron−electron interactions, etc. One
can make matters more intricate by recombining already
parametrized density functionals to propose a new approx-
imation.
The work of Kohn and collaborators establishes the

electronic density as a variable that can be used to determine
all the properties of the system. The useful formalism of Kohn
and Sham employs a single Slater determinant, where its
orbitals, when subject to the exact exchange−correlation
potential, yield the ground-state energy and electronic density
of the system. Nowadays, many variations of the Kohn−Sham
(KS) method are available, making accessible the calculations
for molecular dynamics, thermodynamical statistics, and
spectroscopy, among others.
The first density-functional approximation (DFA) within KS

density-functional theory (DFT) includes correlation and is
able to reproduce the ground-state properties of the
homogeneous electron gas: a system where many electrons
lie in a large periodic box, in such a way that they are properly
described by plane waves and a continuum energy spectrum.

Such a functional is known as the local density approximation
(LDA), and it is decomposed into kinetic, Hartree, and
exchange−correlation (XC) contributions. To study molecules,
the XC contribution is used within a set of single-particle
Schrödinger equations. The XC LDA energy functional yields a
local, multiplicative effective potential that the noninteracting
electrons are subject to. This XC functional depends only on
the electronic density.
The inclusion of a fraction of the Hartree−Fock orbital-

exchange operator in the approximated KS equations helps to
improve the estimation of binding energies,1 lattice constants,2

fundamental gaps,3 and excitation energies.4 The justification
for addition of nonlocal exchange to improve the electronic
structure calculations derives from the adiabatic connection
formula1 and density-functional perturbation theory.5 An
application of this justification is the famous recipe by Perdew
et al.6 to include 25% of Hartree−Fock exchange in the
generalized gradient approximation (GGA) XC energy. If the
GGA functional is the popular PBE,7 then one obtains the
PBE0 approximation,8,9 an XC functional with only one
parameter. In contrast, the most successful functionals are
hybrids with more than three empirical parameters. The
hybridization typically consists of combining different types of
exchange and correlation functionals, leading to approximations
like CAM-B3LYP.10
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The formulation of Kohn and Sham, strictly speaking,
demands employing a local, multiplicative, XC potential, in
other words, that all the orbitals (virtual and occupied) are
subject to the same XC potential. We will refer to this
formalism as standard KS theory. An alternative formal
theoretical framework to incorporate Hartree−Fock (HF)
exchange, or a fraction of it, in the single-particle Schrödinger
equation is known as the generalized Kohn−Sham (GKS)
method:11 Instead of using an auxiliary model of noninteracting
electrons, as in KS DFT, Seidl et al.11 introduced a system of
interacting electrons, where the interaction is described by
means of a simplified functional of the orbitals, which can
depend on parameters. An example of such a tractable
interaction is the HF repulsion, often seen as “2J−K”. Then,
the premise in GKS DFT is that one can approximate a residual
functional, similar to the XC energy functional, that corrects the
energy and density of the auxiliary system of interacting
electrons in such a way that they are close to the corresponding
true ground-state values. There is an uncountably infinite
number of possible auxiliary systems of electrons, the KS
electron system is one of them.
Within the generalization of KS DFT,11 if a fraction of HF

exchange is used, then the rest of the exchange energy is
calculated using a fraction of the LDA exchange. In general, the
GKS method allows us to split the energy into a residual and a
nonlocal, parametrized energy. The LDA can be used to
estimate the former. In other words, the residual energy is
approximated using only an integral over a local function of the
density. In the homogeneous electron gas limit, the parameters
defining the nonlocal exchange are free. These parameters are
related to the addition of nonlocal interactions, their splitting
into long- and short-range contributions, and the mixings of
different correlation functionals.
The GKS formalism is very broad, and its explicit formulas

for the residual energies shown in this study for functionals like
PBE0, or CAM-B3LYP, have not been highlighted elsewhere.
The residual energies are weighted sums of exchange and
correlation energy functionals. These functionals are different
from those defined in standard KS theory. We derive a
Koopmans’ theorem, and an exact relation between the
parameters and the XC derivative discontinuity from standard
KS theory. We show how the Coulomb-attenuated method
(CAM) can be approached in the GKS framework. A new
equation relating the exact XC energies in the parameter space
is presented in this work. We suggest that, with respect to the
generalized gradient corrections, the inclusion of a fraction of
nonlocal exchange in the single-particle Schrödinger equations
tends to be an overweighing factor to obtain improved
excitation energies. In view of this, here we study: (i) A one-
parameter method, consisting in mixing Dirac exchange with
HF exchange, while using a 100% LDA correlation. The
resulting functional is LDA0,12,13 in essence PBE0 without
gradient-dependent terms. (ii) A three-parameter method, i.e.,
the one-parameter method with Coulomb attenuation. We
propose that the adiabatic CAM-LDA0 functional (exact for the
homogeneous electron gas) can be used as a slightly less
expensive alternative to the adiabatic CAM-B3LYP for linear-
response calculations. A cautionary remark, the percentage of
HF exchange is not universal, it varies depending of the type of
application.14,15 Thus, careful judgment and tuning of
parameters are advised, as in the application of any other DFA.
The LDA0 is a functional with little use reported in the

literature. We note that it has been used to study vacancies in

magnesium oxide12 and irradiated silicon carbide.13 On the
contrary, the functional (adiabatic) CAM-LDA0 has not been
considered previously.

■ BACKGROUND THEORY
Suppose n is a given electronic density. It can correspond to
that of the true ground state, or a superposition of excited
states. Define the energy (Gλ) of a system of electrons,
described by a single Slater determinant, which interact through
a partial Coulomb interaction:16

λ= ⟨Φ| ̂ + ̂ |Φ⟩λ
Φ→

G n T W[ ] min
n (1)

where λ > 0 and T̂ and Ŵ are the kinetic and repulsion energy
operators, respectively. In second quantization, T̂ reads 1/
2∫ d3r∇ψ̂†(r)·∇ψ̂(r), and Ŵ = 1/2∫ d3r d3r′ ψ̂†(r′) ψ̂†(r) w(|r−
r′|) ψ̂(r) ψ̂(r′). The function w is the Coulomb repulsion
potential. The value of the functional Gλ at n is obtained by a
constrained minimization over single Slater determinants giving
the density n. This minimization problem is solved using
Lagrange multipliers and leads to a local potential us

λ and a set
of orbital energies {ϵa

λ}. The orbitals used to form the Slater
determinant satisfy the following equation:

λ ϕ ϕ− ∇ + ̂ + ̂ + = ϵλ
λ λ λ λ⎡

⎣⎢
⎤
⎦⎥j v ur r r r r

1
2

( ( ) ( )) ( ) ( ) ( )a a a
2

x, s

(2)

where j(̂r) and vx̂,λ(r) are the local Coulomb and HF exchange
potential operators. The potential us

λ forces the orbital densities
to satisfy ∑aνa|ϕa

λ(r)|2 = n(r), for all r; {νa} are the occupation
numbers. We will denote the term enclosed by square brackets
in the above equation as fλ̂, a Fock operator. The total number
of electrons, N, satisfies N ≥ 2; otherwise, Gλ = G0.
The electronic energy density functional is written as Ev[n] =

F[n] + ∫ d3r v(r) n(r), where v is the one-body external
potential. F is the Levy17 constrained-search functional, F[n] =
min {⟨Ψ|T̂ + Ŵ|Ψ⟩|Ψ → n}. This search is performed over the
Hilbert space of fully correlated wave functions.
Denote Φ̃λ[n] as the optimal single Slater determinant that is

the solution to the minimization problem shown in the right-
hand side of eq 1. We can define a partial Hartree−XC (HXC)
energy as follows:

λ= − ⟨Φ̃ | ̂ |Φ̃ ⟩ +λ
λ λ

λE n W E n[ ] (1 ) [ ]HXC c (3)

The interaction term ⟨Φ̃λ|Ŵ|Φ̃λ⟩ is a density functional, and it
can be expanded as EX

λ[n] + EH[n], where EH[n] is the (usual)
Hartree repulsion energy, 1/2∫ d3r′ d3r n(r) n(r′) w(|r−r′|).
The exact exchange energy functional, EX

λ , is thus given by
the difference ⟨Φ̃λ|Ŵ|Φ̃λ⟩ − EH[n]. Under these definitions, if
we expand the Levy energy F as Gλ + EHXC

λ , we find that the
correlation energy readsa

= ⟨Ψ̃| ̂ + ̂ |Ψ̃⟩ − ⟨Φ̃ | ̂ + ̂ |Φ̃ ⟩λ
λ λE n T W T W[ ]c (4)

Here Ψ̃ is the optimal correlated wave function required to
compute the F functional at n. The above expression is similar
to the correlation energy defined in KS-DFT. Ec

λ corresponds to
the usual correlation energy of KS-DFT if λ = 0. In general,
within the exact framework, EX

λ ≠ EX
0 and Ec

λ ≠ Ec
0, for λ > 0.

The LDA is exact for the uniform electron gas (UEG). In the
UEG limit, the calculation of Gλ requires solution of the
Hartree−Fock problem, where the charge of the electron is
scaled by a factor of √λ. The functional Gλ[n] reads T

TF[n] +
λEHX

LDA[n], where TTF is the Thomas−Fermi kinetic energy

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.5b10864
J. Phys. Chem. A 2016, 120, 1605−1612

1606

http://dx.doi.org/10.1021/acs.jpca.5b10864


functional, and n = N/V (V is the UEG volume). The partial
LDA for the HXC energy is

λ= − + +λE n E n E n E n[ ] (1 )( [ ] [ ]) [ ]HXC
LDA,

H X
LDA

c
LDA

(5)

By adding Gλ and EHXC
LDA,λ together, we then recover the exact

energy functional for the UEG limit for any value of λ.6 Hence,
ELDA[n] = TTF[n] + EHXC

LDA[n].

■ COULOMB-ATTENUATED METHOD
Further parametrizations can be introduced for the auxiliary
system of electrons. One can split the Coulomb interaction
between two electrons using long- (lr) and short-range (sr)
contributions. Such splitting requires an additional parameter,
μ. In general, one can write w(x) = wμ

lr(x) + wμ
sr(x). If the error

function is used to separate the Coulomb interaction, then
wμ
lr(x) = erf(μx)/x, and wμ

sr(x) = erfc(μx)/x. To include a
fraction of long-range Fock exchange, let us define the
functional

λ ζ= ⟨Φ| ̂ + ̂ + ̂ |Φ⟩λ ζ μ
Φ→

G n T W W[ ] min
n

,
lr

(6)

Ŵμ
lr is the lr electron−electron repulsion operator; this operator

is obtained by replacing w by wμ
lr in the definition of Ŵ. In this

case, the constrained search is also carried out over the space of
single Slater determinants. The corresponding partial HXC
energy functional can be shown to be of the form

λ ζ ζ= + − − +λ ζ λ ζ λ ζ λ ζE n E n E n E n[ ] [ ] (1 ) [ ] [ ]HXC
,

c
,

HX
,

HX
sr, ,

(7)

The definition of the functionals involved is as follows: Ec
λ,ζ[n]

= F[n] − ⟨Φ̃λ,ζ|T̂ + Ŵ|Φ̃λ,ζ⟩, EHX
sr,λζ[n] = ⟨Φ̃λ,ζ|Ŵμ

sr|Φ̃λ,ζ⟩, EHX
λ,ζ [n]

= ⟨Φ̃λ,ζ|Ŵ|Φ̃λ,ζ⟩. The function Φ̃λ,ζ is that which minimizes the
expectation value required to calculate Gλ,ζ at n.
Equation 7 is a weighted sum of exchange energies and 100%

correlation. In general, if one accounts partially for exchange
and/or correlation including orbital-dependent forms (in the
calculation of a functional like Gλ,ζ), then the remaining
portions of XC energy can be quantified using an explicitly
density-dependent approximation, such as an LDA, or GGA. A
remark: Definition of the auxiliary system is required prior to
assigning the residual energy to be estimated with the LDA/
GGA. For example, after setting λ, ζ, and μ, one can apply the
LDA/GGA to estimate EHXC

λ,ζ . But enhancing this approximation
requires a new methodology because Φ̃λ,ζ, in contrast to Φ̃0,0
(from standard KS theory), describes the auxiliary system of
electrons.
The use of parametrized interactions is an alternative to using

standard KS orbitals as density functionals to calculate very
accurate, and somewhat expensive, XC potentials, for instance,
as in the exact exchange18 and ab initio DFT methodologies.19

The above definitions encompass the Coulomb-attenuated
method, formalized here within GKS theory. The parameters
can be identified as α = λ and β = ζ. The long-range-corrected
(LRC) method is obtained by simply setting λ = 0 and ζ = 1;
the only parameter is the separation factor μ. In addition, extra
parameters can be introduced to split the different functionals
involved in eq 7 while obeying the UEG limit. For example, one
can mix the LDA and GGA functionals: EY[n] = a0EY

LDA[n] + (1
− a0) EY

GGA[n], where Y is either “X” or “c”; the expansion is
applicable to any of the different energy forms, sr, lr, λ, and/or
μ dependent. These types of mixed functionals are well studied
with respect to training sets. Deciding which functional should
be used can be challenging.20

The energy functional, Ev[n], reads

∫= + +λ ζ
λ ζE n G n E n v nr r r[ ] [ ] [ ] d ( ) ( )v , HXC

, 3
(8)

The total electronic energy is independent of the parameters λ,
ζ, and μ. For instance, suppose that the density is fixed.
Differentiation of both sides of the above equation with respect
to λ leads to

λ λ
∂

∂
= −

∂
∂

λ ζ
λ ζG E, HXC

,

(9)

In a similar fashion one obtains ∂Gλ,ζ/∂ζ = −∂EHXCλ,ζ /∂ζ.
Define the energy operator as

∫λ ζ̂ = ̂ + ̂ + ̂ + ̂λ ζ μ
λ ζn T W W u n nr r r[ ] d [ ]( ) ( ),

lr 3
s

,

(10)

where n ̂(r) is the density operator and us
λ,ζ[n] is the Lagrange

multiplier required to solve the constrained search defining
Gλ,ζ[n]. Consider the following auxiliary energy functional:

∫
= ⟨Φ̃ | ̂ |Φ̃ ⟩

= +

λ ζ λ ζ λ ζ λ ζ

λ ζ
λ ζ

n n

G n u n nr r r

[ ] [ ]

[ ] d [ ]( ) ( )

, , , ,

,
3

s
,

(11)

The wave function Φ̃λ,ζ minimizes the expectation value of
̂
λ ζ n[ ], over the space of single Slater determinants (this

minimization gives rise to the GKS equations, e.g., eq 2).
Hence, invoking the Hellmann−Feynman theorem, we arrive at

λ λ
∂

∂
= ⟨Φ̃ |

∂
∂

|Φ̃ ⟩λ ζ
λ ζ

λ ζ
λ ζ

n[ ],
,

,
, (12)

Expand both sides of this equation using eqs 10 and 11 and
observe that

λ
∂

∂
= ⟨Φ̃ | ̂ |Φ̃ ⟩λ ζ

λ ζ λ ζ
G

W,
, , (13)

If we set ζ = 0, use the above result to integrate both sides of eq
9, and rearrange the result, we obtain

∫ λ= − ′ ⟨Φ̃ | ̂ |Φ̃ ⟩λ
λ

λ λ′ ′E n E n W[ ] [ ] dHXC
,0

HXC
0

,0 ,0 (14)

where EHXC = EHXC
0,0 is the HXC energy of standard KS theory.

After applying the above analysis to the parameter ζ, we can
express EHXC

λ,0 in terms of ζ. This yields

∫
∫

λ

ζ

= − ′ ⟨Φ̃ | ̂ |Φ̃ ⟩

− ′ ⟨Φ̃ | ̂ |Φ̃ ⟩

λ ζ
λ

λ λ

ζ

λ ζ μ λ ζ

′ ′

′ ′

E n E n W

W

[ ] [ ] d

d

HXC
,

HXC
0

,0 ,0

0
,

lr
, (15)

This equation can be further simplified by elimination of the
Hartree energies, which are independent of λ and ζ. The final
result is

∫ ∫λ ζ= − ′ − ′λ ζ
λ

λ
ζ

λ ζ′ ′E n E n E n E n[ ] [ ] d [ ] d [ ]XC
,

XC
0

X
,0

0
X
lr, ,

(16)

where EX
lr,λ,ζ[n] = ⟨Φ̃λ,ζ|Ŵμ

lr|Φ̃λ,ζ⟩ − EH
lr [n]; the lr Hartree energy

is obtained after replacing w by wμ
lr in its definition formula. The

above equation is an exact relation between XC energies in the
parameter space. If the standard XC energy is known, then
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subtracting from it the integrated, nonattenuated, and long-
range exchange energies gives the XC energy for the auxiliary
system defined by λ and ζ.
Generally, if a functional Gz is defined, where the electron−

electron interaction is parametrized in terms of a vector of
parameters, z, then Gz is related to the corresponding HXC
energy by the equation ∇EHXC

z = −∇Gz (the gradient is taken
with respect to the parameters). The integrated form of this
relation is

∫− = − ·∇
γ

E E Gzdz z
zHXC HXC

1 0

(17)

where γ is a trajectory in the parameter space connecting the
points z0 and z1. The difference between HXC energies is
independent of the path because the integrand field is
conservative: ∮ dz·∇Gz = 0.
Equation 17 expresses the equivalence between different

auxiliary electronic systems to calculate the exact ground-state
electronic energy (regardless of the parametrization, the
functional Ev is always the same). However, the electronic
energy approximated by any hybrid DFA does indeed depend
on the parametrization of the auxiliary system. Because of this,
all the current, hybrid DFAs do not satisfy the condition shown
in eq 17.

■ KOOPMANS’ THEOREM AND THE FUNDAMENTAL
GAP

Let us consider a system where the number of electrons is N, a
positive even integer. The ground-state energy of the system is
obtained by minimizing the energy functional Ev over densities
that yield N electrons. For the ground-state density, nN

gs,
suppose that the local potential representing the density of the
system is u ̃sλ, and the auxiliary Slater determinant is Φ̃N,λ. It can
be shown that this potential is given by δEHXC

λ /δn(r) + v(r),
where the functional derivative is evaluated at nN

gs. The Lagrange
multiplier, ũs

λ, has contributions from the partial Hartree-XC,
and the one-body external potentials; the latter could be of the
form −∑αZα/|r−Rα|. Let us define the following electronic
energy operator:

∫λ̂ = ̂ + ̂ + ̃ ̂λ
λT W u nr r rd ( ) ( )3

s (18)

Suppose that us̃
λ is frozen. It is straightforward to derive a

Koopmans’ theorem for the LUMO energy. This reads

ϵ = ⟨Φ′ | ̂ |Φ′ ⟩ − ⟨Φ̃ | ̂ |Φ̃ ⟩λ
λ λ λ λ λ λ+ +N N N NL 1, 1, , , (19)

where ΦN+1,λ′ is the single Slater determinant describing the
auxiliary system where the LUMO (of the N-electron system in
its ground state) is fully occupied.
A relevant result for the present, exact formulation is that the

HOMO energy ϵH
λ equals the negative of the vertical ionization

energy.16,21,22 This derives from the definition of the energy Gλ,
which demands that the orbitals yield the ground-state density.
In the asymptotic region of the real system of electrons, the
exponential decreasing rate of the ground-state density is
governed by the ionization energy.21 For the auxiliary system of
partially interacting electrons, the decreasing rate of the density
is determined by the HOMO energy.23,24 Therefore,16 ϵH

λ = −I.
In Hartree−Fock theory there is no correlation energy

functional, and the Hartree−Fock HOMO−LUMO gap is
larger than the fundamental one. Thus, an interaction strength
0 < λ ≤ 1 could be appropriate to improve the gap estimation.

Although, strictly speaking, any positive real value of λ can be
considered. Perhaps, large values of λ can be useful to study
strongly correlated systems.
The LUMO energy is a function of the parameter λ. In

standard KS-DFT λ = 0; all the KS electrons are subject to the
same local potential. Furthermore, practical calculations
indicate that the KS HOMO−LUMO gap underestimates the
fundamental gap of the system.25 In the asymptotic region, for
example, the exact HXC potential decays as (N − 1)/|r|, this
potential is felt by the LUMO level as well. On the contrary, if λ
= 1 the system displays a full dependency on the two-body
interaction operator, which assigns different orbitals different
interaction fields. The LUMO is screened by N electrons.
Therefore, the LUMO energy with respect to the ionization
energy is raised. For an in-depth discussion, see ref 26.
An analysis of the process of removal and addition of a very

small amount of electron charge (using the grand canonical
ensemble statistics) reveals that the affinity (A) of the molecule
is related to the LUMO energy (λ = 0), and the XC potential,
through the expression27 (−A) = ϵL

0 + ΔXC. The discontinuity
of the XC potential, ΔXC, is limΔN→0

+ vXC(N + ΔN) −
vXC(N−ΔN). This quantity is required to widen the KS
HOMO−LUMO gap, so it matches the fundamental gap of the
system. Within the exact GKS formulation, one can find the
best value of the mixing parameter (λ*) such that the GKS
HOMO−LUMO gap matches the fundamental gap of the
system.
Assuming ΔXC is given, λ* is calculated by solving the root-

finding problem:

∫ λ
λ

Δ = ϵ − ϵ − ϵ − ϵ

= ϵ − ϵ

λ λ

λ
λ λ

* *

*

[ ] [ ]

d
d

d
[ ]

XC L H L
0

H
0

0
L H (20)

The ionization theorem (ϵH
λ = −I) simplifies the root-finding

problem as ΔXC = ∫ 0
λ*dλ dϵL

λ/dλ. The LUMO energy, ϵL
λ can be

expressed as the expectation value ⟨ϕL
λ |fλ̂|ϕL

λ⟩. Now, we have
that (the Fock operator is hermitian)

λ
ϕ

λ
ϕ

ϕ
λ

ϕ
ϵ

= ⟨ |
̂
| ⟩ + ⟨ | ̂ | ⟩ +

λ
λ λ λ

λ

λ
λ

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

f
f

d
d

d

d

d

d
H.c.L

L L
L

L
(21)

Given that fλ̂|ϕL
λ⟩ = ϵL

λ |ϕL
λ⟩, the terms in square brackets in the

above equation can be written as ϵL
λ d⟨ϕL

λ |ϕL
λ⟩/dλ, which is null

because the LUMO is normalized. Hence, we obtain the
following relation:

∫ λ ϕ ϕΔ = ⟨ | ̂ − + ̂ | ⟩
λ

λ
λ

λ
λ

λ
*

v u odXC
0 L x, x L (22)

where oλ̂ is a residual operator. It reads

λ
λ

λ
λ λ

̂ = − +
̂

+λ

λ
λ

λ

o
u v u

(1 )
d
d

d

d
d
d

x x, c
(23)

here ux
λ = δEX

λ/δn and uc
λ = δEc

λ/δn. Equation 22 is exact. It
extends the first-order approximation of Seidl et al.,11 which
shows that the discontinuity depends on the difference between
the orbital averages of the local and nonlocal exchange
potentials.11 Equation 22 suggests that the correlation effects
manifest, implicitly, through the dependency on λ of the
LUMO, correlation, and exchange potentials.
The LDA exchange and correlation potentials are independ-

ent of λ, then oλ̂ = 0. Setting λ = 0 in the integrand of the right-
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hand side of eq 22 leads to the gross estimator λ* ≈ ΔXC/⟨ϕL
0|

vx̂,0 − ux
LDA|ϕL

0⟩. In general, the value of λ* used to reproduce
the discontinuity is a function of the system because ΔXC and
the ground-state orbitals are determined by the external
potential and the number of electrons of the system. In
practice, for solid structures it was found that the optimal
amount of HF exchange correlates with the inverse of the
dielectric constant, estimated by using a standard DFA such as
PBE.28,29

Equation 20 is valid for any DFA, where the discontinuity
reads30 Iapp − Aapp − [ϵL

0 − ϵH
0 ]. The superscript “app” is used

to indicate that the ionization, or affinity, potential is obtained
from explicit calculations with the selected DFA; three self-
consistent calculations are performed, each one for N − 1, N,
and N + 1 electrons. In molecules, one can estimate the energy
gap using any DFA by simply minimizing the ground-state
energy of the molecule for different number of electrons.
Within this approach there are errors in the ground-state
energies associated with the size of the basis set and the self-
interaction error (which is critical when the number of
electrons changes). In solids, however, a direct calculation of
the gap by changing the number of electrons, which does
require adding/removing a very small charge to/from the unit
cell, is very challenging because of the delocalization of charge.
Unfortunately, due to the continuous differentiability of the
LDA, and GGA, XC energies, the quasiparticle gap is
underestimated, hence the need for ΔXC.
The relation between the parameters and the derivative

discontinuity can also be generalized to the many-parameter
case (assuming that the ionization theorem holds). Equation 20
can be written as

∫ ϕ ϕΔ = ·⟨ |∇ ̂ | ⟩
γ*

fzd z
z z

z
XC L L (24)

where γ* is a trajectory between the point where the interaction
is absent (z = 0) and the point (z*) that reproduces the
discontinuity. The quantities on the right-hand side are
functions of the auxiliary interaction. The specific evaluation
of the Fock operator fẑ depends on the explicit form of the
parametrization. It is possible that there is a large set of
parameters satisfying the above equation, and that there are
points in the parameter space where the LUMO energy is a
nonanalytic function, which could be the case if there is orbital
crossing (a situation where the integration can be trajectory-
dependent).

■ DYNAMICS AND LINEAR RESPONSE
Suppose a local time-dependent (td) potential, us

λ(rt) is given.
The Hamiltonian describing the auxiliary system of electrons is

∫λ̂ = ̂ + ̂ + ̂λ
λ λu t T W u t nr r r[ ]( ) d ( , ) ( )s

3
s (25)

The evolution equations can be derived by stationarizing the
action

∫Φ = ⟨Φ | ∂ − ̂ |Φ ⟩λ
λ

λu t t u t t[ , ] d ( ) i [ ]( ) ( )N

T

N t Ns
0

s

(26)

under the constraint that the state of the system is described at
all times by a single td Slater determinant. The evolution
equations for the orbitals are then of the form i∂ϕa(t) =
fλ̂(t) ϕa(t), where fλ̂(t) = −1/2∇2 + λ(j(̂t) + vx̂,λ(t)) + us

λ(t).

For a given interaction strength, λ, and initial state, ΦN(0), as
a simple extension of the Runge−Gross theorem,31 there is a
one-to-one correspondence between the space of local, auxiliary
td potentials and the space of electronic densities.32 To
reproduce the td electronic density of the real system of
electrons, the orbitals are propagated self-consistently using a td
potential ũs

λ(t) = uHXC
λ (t) + v(t), where v(t) is the total td one-

body external potential of the system, which might include the
driving scalar field, i.e., a laser field. One can introduce a proper
XC action functional in such a way that

λ
δ

δ
δ

δ
= −

̷
̷

+
̷

̷
+λu t

n t n t
g tr

r r
r( , ) (1 )

( , ) ( , )
( , )XC

X c
XC (27)

where gXC is a memory term that vanishes in adiabatic
approximations. The functional derivative symbol is defined as
a symmetry operation in the Keldysh space that avoids a
causality paradox.33 The adiabatic approximation is obtained by
replacing the actions in the above equation by the
corresponding ground-state analogues. The resulting adiabatic,
partial HXC potential is uHXC

A,λ (r,t) = (1 − λ)uHX
gs [n(r,t)] +

uc
gs[n(r,t)]. For example, if Dirac exchange34 is used, we find
uX
gs(r,t) = −4/3CXn

1/3(r,t); the Hartree potential is adiabatic.
Equations 16 and 22 indicate that local and nonlocal

exchange energies, and potentials, are quite relevant quantities
to explore the relationship between the ground-state GKS XC
energies, the XC derivative discontinuity, and the space of
parameters. In addition, there is a close connection between the
ground-state parametrized methods and their linear-response
extensions. In a zero-order electronic transition, an electron is
promoted from an occupied orbital to a virtual one. The linear-
response formalism, roughly speaking, leads to the correction of
this type of excitation, where the zero-order transition is shifted
in the energy scale by the kernel. The approximated adiabatic
kernels in general provide a small shift, usually insufficient to
estimate electronic excitations in molecules: It is known that a
purely local XC kernel in standard KS theory, like the adiabatic
LDA, often produces an unsatisfactory optical gap. In both the
td and ground-state cases, with respect to pure HF calculations,
the relaxation and compression of the orbital levels caused by
the XC LDA potential is excessive. The addition of an
appropriate fraction of orbital exchange reduces these effects by
inducing orbital-specific screening. Nonetheless, the gradient-
based corrections to the XC LDA, present in functionals like
PBE, do not seem to produce a significant change on this
widening of orbital levels, as we report in the next section.

■ DISCUSSION

To study the effect of λ, and ζ, we chose a subgroup of the
benchmarking set previously reported by Peach et al.4 The
subset maintains an even balance between the number of
charge-transfer and local excitations. Here we analyze the
excitation energies of the following molecules: HCl, CO, 4-
(N,N-dimethylamino)benzonitrile (DMABN), dipeptide, β-
dipeptide, N-phenylpyrrole (PP), anthracene, and some
polyacetylene (PA) oligomers. To refer to td functionals, we
affix an “A” to the acronym of their respective ground-state
approximation. We compare the performance of the adiabatic
functionals: APBE0 (λ = 0.25), ALDA0 (λ = 0.25), ALDA1 (λ
= 0.3), and ACAM-LDA0. Additionally, we include the data
corresponding to AB3LYP and ACAM-B3LYP, calculated by
Peach et al.4
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First, we optimized all the molecular geometries employing
the basis set 6-31G* for each functional, PBE0, LDA0, and
LDA1. In most cases, the excitation-energy calculations with a
certain adiabatic DFA were performed at the molecular
geometry obtained with its ground-state equivalent functional.
For the calculations with ACAM-LDA0 we use the LDA0
geometry. And, for β-dipeptide the LDA0 optimal geometry
was employed for all the excitation calculations. The linear-
response TDDFT computations were carried out with the
correlation-consistent, polarized, triple-ζ (cc-pVTZ) basis set,
except for CO, for which we used d-aug-cc-pVTZ (as suggested
in ref 4). Our calculations were run using the NWChem suite.35

We observed that convergence of the linear-response
calculations with the adiabatic LDA0 functional is twice as fast
as with APBE0; both functionals display very close mean
absolute errors, Figure 1. The excitation energies from ALDA0

are around 0.1 eV less than those obtained using APBE0. Also,
for this set of excitation energies, both APBE0 and ALDA0
yield similar numbers as AB3LYP. Increasing the amount of
Fock exchange raises the excitation energies with respect to
APBE0. Consider, for example, LDA with λ = 0.3, which we
denoteb LDA1 (Table 1). ALDA1 gives a slightly better
accuracy than ALDA0 (Figure 1). Note, however, that APBE0,
ALDA0, and ALDA1 are unable to describe properly the
charge-transfer (CT) excitation energies as the ACAM-B3LYP
functional does. The solution to improve the description of
such processes is the addition of the long-range HF exchange
contribution. Why does this work? The addition of nonlocal
exchange increases the excitation energies but does not raise
the CT values high enough. One might try to further increase λ,
but this would cause errors in the non-CT excitations. Long-
range Fock exchange raises effectively the energy of the long-
range excitations, which are essentially of the CT type. For local
excitations, the long-range HF exchange has little effect.
The method of Yanai et al.10 (the creators of CAM) is an

extension of the work of Tsuneda et al.,37 who showed that
partitioning of the Coulombic interaction and use of Fock
exchange for the lr interactions were of practical utility. These
studies focus only on exchange interactions. The effect of
nonlocal correlations is rather unexplored. Recently, hybrid
functionals combining MP2 and local functionals have been
proposed (we refer the reader to ref 38 for more information).
The inclusion of MP2 can also be analyzed within the GKS
framework.
The gradient corrections to the adiabatic LDA0 functional have

little ef fect on the excitation energies. For example, we reduced

CAM-B3LYP to CAM-LDA0. This latter functional consists in
setting λ = 1/4, ζ = 1/2, and μ = 1/3, whereas the residual parts
of exchange and correlation are treated with LDA only. The
factor μ = 1/3 comes from the study of Tsuneda et al.,37 and ζ
= 1/2 derives from the work of Yanai et al.10 The performance
of ACAM-LDA0 agrees with that of ACAM-B3LYP, Figure 1.
The former functional leads to computer times reduced by
about 30% with respect to ACAM-B3LYP. The cost cannot be
reduced further due to the use of the error function. In settings
where computational resources are limited or need to be shared
among many users, some reduction of power demands might
be desired. Approximation and speed-up of exchange integrals
is an ongoing field.39,40 If a boosting algorithm can be applied
to a functional like the adiabatic CAM-LDA0, then the savings
could be increased.
The tendency of gradient-dependent terms to produce small

contributions to the excitation energies, for the standard theory
(no parameters, λ = 0), can also be inferred from earlier studies.
For instance, the data reported in refs 41−43 suggest that for
low-lying excitation energies the results change by small
amounts when switching from the adiabatic XC PBE functional
to ALDA.
The purpose of the gradient corrections to the LDA XC

energy is mainly to extend the LDA functional to the
inhomogeneous electron gas case. To investigate atoms and
molecules, the gradient-corrected functionals give slightly more
accurate ground-state properties than the LDA. In a
dissociation process, for example, the curvature of the density
increases due to the reduction of the density in the bonding
regions. Because the GGAs somewhat account for this, the
binding energies are improved. In contrast, the LDA0, or CAM-
LDA0, is less suited for describing binding energies.
A question that might come to mind is, “Should the ground-

state XC potential be the same as the td one?” The answer
depends on the type of application, the user needs, the
hardware available, etc. For example, there are molecules for
which combining LDA0 ground-state calculations with an
excitation-energy analysis based on the ALDA0 XC potential
could be enough. In addition, for calculation of forces and
atomic motions, it can be convenient to use the same
functionals with gradient corrections. On the contrary, there
might be cases where one needs an accurate geometry from a
different methodology and could simply use a functional like
ALDA0, or its CAM version. From the perspective of rigorous
TDDFT, however, it must be remarked that the improved, td
XC potential should feature dependence on the initial state and
the evolution of the electronic density, i.e., memory depend-
ence. Thus, an improved, td XC potential should extend its
ground-state counterpart and display a different algebraic
structure.
The errors shown in Figure 1 indicate that introduction of

the parameters λ, ζ, and μ (alternatively, α, β, and μ) is useful
to improve optical properties. Interestingly, the GKS formalism
allows for inclusion of many types of auxiliary interactions
between the auxiliary electrons to enhance the approximations
in standard KS theory. It would be desirable to have a reference
system where the value of the parameters λ, ζ, μ could be
estimated. The concept of the electron gas, which offers a vast
set of physical gapless systems, has been originally used to
obtain local and semilocal approximations. The way it was
traditionally used might discourage employing these systems to
estimate parameters like λ, ζ, and μ. However, downscaling the
electron gas model to small volumes leads to non-negligible

Figure 1. Performance comparison of DFAs in terms of mean absolute
error, calculated using the reference values of Table 1.
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energy spacings in the spectrum. And, perhaps, at these scales
the estimation of the parameters can be performed.

■ CONCLUDING REMARKS
The GKS formalism allows us to regard XC functionals like
PBE0, and LDA0, as part of a different flavor of KS theory that
includes at least one parameter. In light of the GKS framework,
we studied hybrid functionals and their associated, auxiliary,
electronic systems. Also, some formal conditions that hybrid
functionals should satisfy were shown. In principle, different
systems require different amounts of nonlocal Fock exchange,
which can motivate further work on transforming the
parameters into purely ab initio quantities. Nonlocal exchange
corrections in combination with the adiabatic LDA, e.g., the
CAM-LDA0 form, can produce better charge-transfer excitation
energies with respect to functionals like AB3LYP, and APBE0.
This suggests that a portion of nonlocal exchange is a dominant
factor for the enhancement of excitation energies. Nonetheless,
we remark, discretion and insight by the user is required to
properly set up the correct amount of orbital exchange, and
related quantities. Knowledge deduced from reliable ab initio
calculations and experimental measurements might assist in this
matter.
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■ ADDITIONAL NOTES
aA similar expression for the GKS correlation energy was
defined by Görling and Levy.16 Their formula, however, is
different from eq 4 because their expansion of the partial HXC
energy depends on the exchange energy of standard KS theory.
bThe GGA version of the XC LDA1 is in essence the PBE0-1/3
functional; see ref 36 for details.
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