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ABSTRACT

We present an algorithm to compute the lattice energies of molecular crystals based on the many-body cluster expansion. The required com-
putations on dimers, trimers, etc., within the crystal are independent of each other, leading to a naturally parallel approach. The algorithm
exploits the long-range three-dimensional periodic order of crystals to automatically detect and avoid redundant or unnecessary computa-
tions. For this purpose, Coulomb-matrix descriptors from machine learning applications are found to be efficient in determining whether
two N-mers are identical. The algorithm is implemented as an open-source Python program, CrystaLattE, that uses some of the features of
the Quantum Chemistry Common Driver and Databases library. CrystaLattE is initially interfaced with the quantum chemistry package Psi4.
With CrystaLattE, we have applied the fast, dispersion-corrected Hartree-Fock method HEF-3c to the lattice energy of crystalline benzene.
Including all 73 symmetry-unique dimers and 7130 symmetry-unique trimers that can be formed from molecules within a 15 A cutoff from
a central reference monomer, HF-3c plus an Axilrod-Teller-Muto estimate of three-body dispersion exhibits an error of only —1.0 kJ mol™!
vs the estimated 0 K experimental lattice energy of —55.3 + 2.2 k] mol™'. The convergence of the HF-3c two- and three-body contributions to
the lattice energy as a function of intermonomer distance is examined.
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I. INTRODUCTION Organic crystals are good candidates to exploit the MBE
approach. These solids are held together by noncovalent interac-

The many-body expansion (MBE) is a widely applied fragmen- tions that can be accurately described by fragmenting the system

tation approach for intermolecular interactions.” * It is based on
the idea that the full interaction of an N-particle aggregate can be
decomposed as an expansion of two-, three-, four-, ..., N-body
interactions. As a byproduct of using the MBE, the decomposi-
tion of the energy allows for meaningful physical insights about the
forces that bind aggregates together.” Additionally, the nonadditive
many-body energy contribution per molecule generally decreases
as the number of molecules being considered increases. Therefore,
the accuracy of the many-body expansion is typically incremental:
the more terms counted in before truncation, the more accurate it
becomes.

into smaller many-body aggregates (for small molecules, it is eas-
ier to use individual molecules as the bodies in the MBE, and sum
over monomers, dimers, trimers, etc., of molecules). Additionally,
in contrast to disordered systems like liquids, the three-dimensional
order of crystalline structures introduces redundancies that can be
exploited to reduce the number of computations required to obtain
the ground-state properties of such systems.

There have been several successful efforts in computing the lat-
tice energies of organic crystals using quantum chemical methods
and the MBE in the last decade.'”'”””"*" Highly accurate estima-
tion of the crystal lattice energy of benzene, for example, has been

J. Chem. Phys. 151, 144103 (2019); doi: 10.1063/1.5120520
Published under license by AIP Publishing

151, 144103-1



The Journal
of Chemical Physics

achieved by our research group and others.” " However, the lack
of generally available software to automate the process to compute
lattice energies has limited the application of this approach. Also,
if not automated, the setup process to execute these calculations is
tedious and error-prone.”

In this article, we present an algorithm and associated soft-
ware, CrystalattE, to automate the calculation of lattice energies
of molecular crystals via the MBE. CrystaLattE was designed to
return a highly accurate lattice energy, given a crystalline struc-
ture; thus, it requires only a Crystallographic Information File (CIF)
as input.”*”” The motivation stems from the current challenges in
Crystal Structure Prediction (CSP). With the recent advances in effi-
cient sampling of structures, detecting probable crystal polymorphs
is no longer the bottleneck of successful CSP.”*** There are several
algorithms that perform well in this task.”” "’ However, distinguish-
ing which of these polymorphs is the most stable remains the most
demanding task.”*""* This is because in many cases, two or more
of these low-lying polymorphs may have lattice energies that differ
by less than 1 kcal mol™'.***"** Therefore, coupling highly accu-
rate wave-function methods with the MBE could potentially have
a significant impact in overcoming this challenge.

Of course, the use of high-accuracy methods leads to a large
computational cost. Hence, we developed CrystaLattE to be highly
scalable and to allow for dual-level parallel computation. Our strat-
egy to compute lattice energies also opens the possibility of using
multiscale techniques that may help further increase efficiency.

In Sec. 11, we present a brief explanation of the MBE approach
and how we exploit it in the context of crystal lattice energy com-
putations. We then describe the algorithm for automated compu-
tation of lattice energies implemented in CrystaLattE. Finally, the
approach is applied to compute the crystal lattice energy of benzene
using Grimme’s triply corrected Hartree-Fock method (HF-3c)."
We demonstrate that HF-3c, one of the simplest and cheapest wave-
function methods currently available, turns out to be reasonably
accurate for computing the crystal lattice energy of benzene using
the MBE. We also discuss the convergence of two- and three-body
interactions in this system with respect to cutoff distances at the
HF-3c level.

Il. THEORY

In the many-body expansion, the total energy of a molecular
cluster is given as

N N N
E=>Er+Y . AEj+ > AEjg+--. (1)
1 I<J I<J<K

Here, N is the number of monomers in the cluster, E; is the energy
of monomer I, AEj is the interaction energy of the dimer formed by
monomers I and J,

AEy = Ey — Er - Ej, (2)

and AEj is the nonadditive three-body energy of the trimer formed
by monomers I, J, and K,

AEpk = Egx — AEy — AEix — AEjx — Er — Ej — Ek. (3)

Equation (1) is exact if it is not truncated (i.e., if one includes
terms up to the nonadditive N-body contribution, for a cluster of
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N molecules). Truncating at some lower order (typically at the level
of two-, three-, or four-body interactions) gives an efficient way to
estimate the total energy at a substantially reduced computational
cost.

The lattice energy of a crystal is defined as the energy required
to construct the lattice starting from a state where all its molecules
are infinitely separated. In our initial applications, we are examining
fairly rigid molecules, and so, we neglect any monomer deformation
terms. Hence, the lattice energy is the sum of the N-body interac-
tion energies, AEy;, AEpx, etc., up through the chosen truncation
level. However, if we model the crystal as an infinitely extended solid,
then there are an infinite number of dimers, trimers, etc. So, we com-
pute the lattice energy per monomer (or per mole of monomers) to
obtain a finite result. For this purpose, we pick a reference monomer
that will appear in all N-mers of the MBE. Then, we select all
dimers, trimers, etc., that satisfy various filtering criteria discussed
below.

For each N-mer retained, we compute its N-body interaction
energy. This energy is divided by N, the number of monomers in
the N-mer, to obtain the contribution per monomer. We only need
to compute each symmetry-unique N-mer once and multiply it by
the number of symmetry-equivalent N-mers that contain the same
reference monomer. The contribution, €n-mer, of each N-mer to the
crystal lattice energy is thus computed as

AE;. ..
GN-mer = #N-mer % II\] N > (4)

where N is the number of monomers and %Zn.mer is the num-
ber of replicas of each unique N-mer. For dimers, AE;. . .y is the
dimer interaction energy, as defined in Eq. (2); for trimers and
higher-order N-mers, AEy. . .y corresponds to the nonadditive por-
tion of the many-body energy, e.g., as defined for a trimer in
Eq. (3).

In our initial applications, we are primarily interested in non-
polar or weakly polar molecules. For strongly polar molecules,
convergence may be aided by using electrostatic embedding tech-
niques.'”'®"” This feature has not yet been implemented, but it
should be straightforward to do so.

I1l. ALGORITHM AND SOFTWARE IMPLEMENTATION

CrystaLattE was designed to take a CIF and return its lat-
tice energy, using the MBE. The approach described in Eq. (1)
offers several advantages. First, the strength of the interactions
decays as the inverse of the powers of the separations between
monomers: energies rapidly decay with the distance. Therefore, we
have implemented distance cutoffs in CrystaLattE to make calcula-
tions more efficient. As our initially targeted applications involve
lattice energy computations at fixed geometries, we have not yet
employed smoothing functions for the distance cutoffs; this would
be required to avoid discontinuities in the lattice energy as a function
of the lattice parameters as monomers move inside or outside the
cutoff distance. Of course, discontinuities will decrease in magnitude
for larger cutoff values.

The second advantage of Eq. (1) is that the strength of the
interactions of high-order N-mers will decay more rapidly with the
distance than the low-order N-mers. For example, trimer interac-
tions are expected to decay orders of magnitude faster than the dimer
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interactions. Thus, the contribution of high-order N-mers practi-
cally vanishes, and usually, the expansion can be truncated at the
level of trimers or tetramers.”

Third, crystals are long-range, 3D-ordered structures that
exhibit symmetrical properties. For that reason, the geometries
of the many-body interactions occurring in the crystal are often
repeated. Then, the number of interactions to be computed can
be significantly reduced by detecting such redundancies. Crysta-
LattE includes a sophisticated filtering procedure designed to avoid
unnecessary computations.

Fourth, the lattice energy is decomposed into inherently inde-
pendent interactions. On the one hand, this characteristic allows for
the application of multiscale modeling techniques: various meth-
ods can be applied to compute interactions at different ranges or
for distinct N-mer orders. On the other hand, computations of
independent interactions can be distributed, enabling pleasant par-
allelism: our code runs in a dual-parallel fashion, by distributing
multithreaded jobs on multiple nodes.

A. Details of the implementation

CrystaLattE is distributed as free and open-source soft-
ware, under the GNU Lesser General Public License version 3
(LGPL v3). We have made the code available through GitHub at
https://github.com/carlosborca/CrystaLattE.

Originally, this project was thought of as an add-on to the
computational chemistry package Psi4, which already contains some
tools required (o execule automated many-body computations.”
Our code also relies on several tools contained in the Quantum
Chemistry Common Driver and Databases (QCDB) set of modules
and scripts.” Therefore, our code is written in Python 3, which sim-
plified this integration. In addition, we also employ PyCIFRW, a
module that provides support for reading and writing CIFs using
Python.” PyCIFRW is now maintained and developed at the Aus-
tralian Nuclear Science and Technology Organisation (ANSTO) by
Dr. James R. Hester. Psi4, QCDB, and PyCIFRW are the software
dependencies of CrystaLattE.

Currently, CrystaLattE uses the Psi4 Application Program-
ming Interface (API) mode as its back-end for fully automated
execution on a terminal. In that case, the user needs only to
provide a CIF. However, CrystaLattE can also be executed in
semiautomatic fashion. In this case, the user provides the CIF
and the code returns all the input files that must be run. The
user has the freedom to choose how to run those input files.
After all outputs are generated, an analysis script extracts the
quantities required, applies the MBE, and returns the lattice
energy.

The semiautomatic mode provides flexibility and control on
how to distribute calculations among the available resources. In
addition, when running in semiautomatic mode, besides the abil-
ity to generate Psithon inputs for Psi4, CrystaLattE can also out-
put LibEFP™* and GAMESS™ inpuls to compute the many-
body interactions with the Effective Fragment Potential (EFP)
method.”"

In Subsections III B-III F, we describe the general workflow
of CrystaLattE and provide further detail on the most important
parts of the code. In addition, a diagram summarizing the execution
routine can be found in Fig. 1.
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FIG. 1. General usage routine of CrystaLattE. Provided with a CIF file, the code
automatically computes the lattice energy of a molecular crystal employing the
MBE approach. The most important functions and data structures are colored.

B. Start-up routine and supercell preparation

The execution starts by reading a configuration input. This
file contains information about the execution mode, computational
resources, MBE truncation order, cutoffs, methods setup, and CIF
details.

A CIF contains the information necessary to reconstruct
a Cartesian representation of the unit cell of its corresponding
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crystal. Employing the CifFile() function from the PyCIFRW
module, CrystaLattE extracts the positions of the atoms, the ele-
ment labels, and the allowed symmetry operations of the unit
cell.

The code then proceeds to generate a supercell, by replicat-
ing, a given number of times, the unit cell in the three crystalline-
coordinate dimensions a, b, and c. Once the unit cell has been repli-
cated in every direction, the code transforms the atomic-position
coordinates from the crystalline coordinate system to the Cartesian
coordinate system.

The unit cell must be replicated enough times such that a sphere
of radius equivalent to the monomer cutoff (explained in Subsec-
tion 111 C) can be fully embedded in the resulting supercell. In other
words, the shortest Cartesian dimension of the generated supercell
must be at least twice the length of the monomer cutoff. Therefore,
we replicate the unit cell an odd number of times in each dimen-
sion to guarantee that the original reference unit cell is kept closest
to the origin. This is helpful in enumerating monomers as discussed
in Subsection I1I C.

Then, the center of this supercell, calculated as the average of
each of its Cartesian dimensions, is translated to the origin. Once
the process is completed, the generated supercell is written to the
execution directory as an XYZ file.

C. Identification of monomers

The next step is to detect all the monomers in the super-
cell. An implementation of the Breadth-First Search (BES) algo-
rithm’ for molecular bonding, packaged in QCDB, is employed
for that purpose.”’ The BFS is an algorithm for searching tree or
graph data structures, like bond mapping in molecules. By traversing
through nearest neighbors, it will detect which atoms are connected
by a bond using criteria based on typical van der Waals radii of
elements.

Once all the monomers in the supercell have been identified,
CrystaLattE enumerates the monomers starting from the one with
the shortest position vector from the origin. That is why the unit cell
is replicated an odd number of times to guarantee that the index-
ing process starts from the center of the central unit cell and not
from one of its edges. That procedure ensures that the indices are
assigned in increasing order of proximity to the center of the super-
cell. At the same time, the algorithm discards any monomers for
which their atom closest to the origin has a position vector longer
than the monomer cutoff.

As shown in Fig. 2, the result is a quasispherical aggregate of
monomers that have at least one atom whose distance to the origin
is within the monomer cutoff. The code creates a dictionary for each
monomer, containing information about its geometry and center of
mass (COM).

D. Construction and filtering of N-mers

In most cases, truncation of the MBE at the level of trimers
should provide acceptable results. However, CrystaLattE can com-
pute the MBE up to the order of pentamers. After all monomers
within the monomer cutoff distance are extracted from the super-
cell, the next task is the construction of all N-mers, up to the level
requested by the user.

ARTICLE scitation.org/journalljcp

FIG. 2. lllustration of the monomer cutoff. From the center of the supercell, any
monomer that includes at least one atom inside a sphere of radius equivalent to
the user-specified monomer cutoff will be stored; otherwise, the monomer will be
discarded.

An N-mer builder function has been implemented for that pur-
pose. Taking the first monomer, the one closest to the origin, as
the reference, the function combines it with all other monomers to
form all the dimers that contain the reference monomer. If the user
has requested the expansion to include higher N-mers, CrystaLattE
follows the same procedure: taking the first monomer as a refer-
ence, it forms all N-mers that arise from permutationally distinct
combinations with all the other monomers.

Given that crystals are repetitions of a unit cell, many of the
N-mer structures generated may be symmetry-equivalent replicas of
each other. In addition, as briefly discussed in Sec. II, the contribu-
tion of an N-mer to the lattice energy decays rapidly when the sepa-
ration of its monomers increases, especially for high-order N-mers.
In such cases, calculations of many long-range separated N-mers
may turn out to be unnecessary. Therefore, we have devised a series
of filtering schemes to keep the number of required calculations to
the minimum.

The importance of the implementation of these filters will be
discussed later in Sec. V, but they are essential to keep the com-
putational cost of the MBE approach within practical reach. There
are five filters coded in the N-mer builder function. The first checks
that the distance between the closest neighbors of each pair of
monomers in the N-mer is shorter than a given N-mer cutoff (see
Fig. 3). The user can specify different cutoffs for different N-mer
orders. The second verifies that the distance between the COMs of
each pair of monomers in the N-mer is shorter than a given COM
cutoff (see Fig. 3). This is a global cutoff affecting N-mers of all
orders. The next three filters are designed to face the problem of
symmetry-uniqueness.

Once the cutoffs have been satisfied, if the algorithm finds two
structures that are identical, only the one generated first will remain.
The other one will be counted in as a replica of the first and dis-
carded. A replica multiplier will be later used to account for all
discarded replicas when reconstructing the MBE energy.

The third filter works comparing the nuclear repulsion energy
(NRE) between two N-mers to determine if they are different. Cal-
culating the NRE of a chemical system is a simple and fast operation.
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FIG. 3. Different types of cutoffs for a benzene trimer. The red dashed line shows
the COM cutoff. Among the three vectors between each pair of COMs, the longest
shall not be longer than a user-specified distance. The blue dashed line shows
the trimer cutoff. Taking the shortest interatomic separation between each pair of
monomers, the longest of these three vectors shall not be longer than a user-
specified distance.

The NRE filter can unequivocally determine if two dimer structures
are identical or not. However, oddly enough, we have found that
for trimers and higher-order N-mers, there are cases in which dif-
ferent structures can have exactly equivalent NREs (we discuss one
of these cases and its implications in Appendix A). If the NRE of a
new N-mer is different from that of each of the previously stored
N-mers, the N-mer is kept. However, if the NRE matches that of a
previously generated N-mer, then the algorithm needs to proceed to
the next filters: the chemical-space descriptor filter or ultimately the
B787 Dreamaligner filter. These two filters are complex enough to
merit a deeper explanation.

1. The chemical-space filter

CrystaLattE employs a machine-learning descriptor that
defines a molecule’s point in chemical space to determine unique-
ness among N-mers.”’ The code computes the descriptor by finding
and sorting the eigenvalues of a slightly modified Coulomb matrix,
usually denoted as M.

The off-diagonal elements are determined by the Coulombic
interaction between the charge Z; of nucleus i and the charge Z; of
nucleus j, separated by a distance Rj;,

My =22 (5)

As explained by Rupp et al, the expression for diagonal ele-
ments was determined by a polynomial fit of nuclear charge to
atomic energies,”’

1
M;; = EZ124 (6)

This descriptor encodes the identities of the atoms, through
its dependence upon nuclear charges, and it is invariant to
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translation and rotation, due to its dependence on interatomic
distances.

Once the point in chemical space is defined for a given N-mer,
its equivalency to another N-mer can be determined by computing
the distance in chemical space from such other N-mer. The distance
is computed as the norm between the sorted arrays of eigenvalues.

Using this metric, CrystaLattE can identify geometrically equiv-
alent N-mers rapidly. Two geometrically equivalent systems will
have the same ordered eigenvalues, independent of the ordering of
the atoms in M (Appendix B provides further details).

2. The B787 Dreamaligner filter

Although the chemical space eigenvalues descriptor turned out
to be extremely reliable, it was implemented after we initially devel-
oped and tested a function to align N-mers, which we call the B787
Dreamaligner.

The B787 function’"" takes two molecules of identical atom
types and identical, superimposable, mirror-superimposable, or
nonsuperimposable geometries and computes the best shift, rota-
tion, and atom map (and optional mirror-image boolean) for align-
ing one (C) to the other (R) that minimizes the root-mean-square
deviation (RMSD) of the atomic coordinates. The optimal rotation,
U, is obtained by minimizing the norm of the residual |R - UC||
using the unit quaternion formulation of the Kabsch algorithm."”"’
Since a physically meaningful Kabsch result requires correct atom
mapping, the smallest Kabsch RMSD is selected after iterating over
all reasonable atom mappings, a number that increases factorially
with the system size if generated by simple permutation among
atoms of a type. To heavily filter atom mappings, the Kuhn-Munkres
(Hungarian) algorithm”""" is first used to find a best mapping of
the two systems’ atoms by minimizing a cost matrix formed by
a Coulomb matrix-based measure of how well an atom of sys-
tem C replaces a like-type atom of system R by similarity of dis-
tance to other like-type atoms. The resulting optimal mapping is
invariant to exchange of symmetry equivalent atoms due to the
cost matrix’s formulation as a holistic descriptor of each atom to
the whole system. Since Kabsch operates back in Cartesian space
where atom ordering does matter (a square with vertices num-
bered around the perimeter cannot be rotated onto a congruent
square with vertices numbered across the diagonal), all spatial-
symmetry-equivalent mappings need to be generated and evalu-
ated. The reduced cost matrix (maximal zeros) emerging from the
Kuhn-Munkres is used to seed the Uno algorithm® for enumer-
ating the complete set of optimal solutions (and sorted nonopti-
mal) given one optimal solution. To provide leeway for nonex-
act alignments, a user-adjustable parameter controls the quantity
of nonoptimal mappings to pass to Kabsch. The Kuhn-Munkres
and Uno algorithms are applied to each atom type separately,
and the resulting mapping candidates combined permutatively and
returned as a generator to the Kabsch RMSD minimization loop.
Several options are available to the user to tune whether sys-
tems C and R are expected to be nonsuperimposable, mirror-
superimposable, or already like-ordered so that the stages can be
skipped if unneeded. While the Kabsch algorithm was implemented
directly from the literature, the Kuhn-Munkres and Uno algorithms
were lightly adapted and integrated from independent implementa-
tions in, respectively, the SciPy library”” and a software repository
on GitHub."*
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For practical applications, CrystaLattE employs the chemical-
space descriptor detailed above to detect replicas. This is because the
Coulomb-matrix algorithm is faster in our implementation, espe-
cially for large molecules. However, CrystaLattE also provides the
aligner as an alternative option.

E. Prioritizing calculations

Once symmetry-unique N-mers have been found, redundan-
cies accounted for, and far-separated structures rejected, the next
step is determining the order in which the calculations should run.

We have devised a criterion to prioritize the execution of those
N-mers from which we expect a greater contribution to the lattice
energy, inspired by the R™° dependence of the Axilrod-Teller-Muto
(ATM) potential.””" In the ATM potential, the strength of the dis-
persion interaction of three bodies A, B, and C depends inversely
upon the separations between them: 1/(R3;R5 Ry ).

If the bodies are small molecules, the distances Rap, Rac, and
Rpc are defined as the separation between COMs of three monomers
A, B, and C. For large anisotropic molecules, however, this approxi-
mation may break down.”””" Therefore, instead of using COM sepa-
rations by default, we use closest-contact separations in CrystaLattE.

For a given N-mer, its priority criterion, 2, is then calculated
using the closest-contact separations among all pairs of monomers
that compose it,

1
@ E R 7)

In this case, i and j denote the closest atoms in two differ-
ent monomers I and J, and the product runs over all dimers in the
N-mer. Alternatively, if the user chooses, R;; may be replaced by Ry,
the separation among COMs of the monomers I and J, to resem-
ble the ATM potential. & is computed and stored when the N-mer
is built. Thus, the execution order is established when the popula-
tion of the N-mers dictionary takes place, with N-mers computed in
order of descending values of Z.

F. Computation manager

The final piece of the code is the computation manager, which
controls the execution of calculations and the extraction of required
data from their corresponding outputs. Each N-mer computation is
totally independent of the others, so they can be executed in a pleas-
antly parallel fashion. When running in semiautomatic mode, once a
calculation has been executed, the order used to construct the partial
lattice energy is controllable by the user. In addition, each individ-
ual N-mer computation may be run on multiple cores, leading to a
dual-level parallelism.

The CrystaLattE manager has several run types. The default
execution mode is psi4api, which is fully automatic, and runs
Psi4 in the back-end through its API, utilizing the maximum number
of threads available. When running in psi4api mode, the manager
will access the N-mers dictionary and start executing the calculations
for dimers first, then trimers, and so on, according to their priority
order.

When each calculation is completed, the manager retrieves that
N-mer’s contribution to the many-body energy from the Psi4 API
and stores it in the dictionary of the corresponding N-mer. Then, it
multiplies that quantity times the corresponding number of replicas
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and divides over the number of monomers in the N-mer to obtain
the contribution of that structure to the crystal lattice energy, as in
Eq. (4). After the arithmetic is done, the code prints the results on a
summary table, which is also written to disk in a comma-separated
values (CSV) file.

By contrast, the psithon execution mode is designed to be
semiautomatic: it requires no user intervention to generate the N-
mer structures, but instead of running them on the back-end, it
writes a standard Psi4 input file for each unique N-mer structure
so that the user may execute them manually. These files are writ-
ten to disk on the working directory where the CrystaLattE input is
located.

Each of the Psi4 inputs contains comments with relevant data
about the structure, such as the N-mer name, the number of repli-
cas, the priority quantities, closest-contact separations, and COM
separations. These pieces of information are useful once all out-
puts have been gathered. At this point, the user executes CrystaLattE
in psithonyzer mode to reconstruct the lattice energy from the
contributions of each structure.

Besides these regular execution modes, the manager can also
generate inputs to be run on GAMESS or in LibEFP, including the
generation of MAKEFP protocol inputs to generate effective frag-
ment potentials (EFPs), if these are not available. An implementa-
tion to generate NWChem” input files is in progress. Eventually, we
expect to support many quantum chemistry programs via the QCDB
project.

IV. COMPUTATIONAL DETAILS

Calculations performed with Kruse and Grimme’s geomet-
ric counterpoise (gCP) scheme in conjunction with dispersion-
corrected HF on minimal basis sets can yield accurate binding ener-
gies at a low computational cost.”’ Consequently, we decided to test
the HF-3¢c method™ with its natural MINTIX basis set and assess its
performance at computing the lattice energy of crystalline benzene
with the MBE.

A. CrystalattE setup

An experimentally determined structure of crystalline benzene
at 138 K was obtained in CIF format from the Cambridge Struc-
tural Database (CSD).”* The structure corresponds to CSD code
BENZENO1, and it was the same that was employed in previous
computational studies of crystalline benzene.”””**">

The unit cell described by the CIF was replicated seven times in
each crystalline-coordinate dimension to generate the supercell. A
monomer cutoff distance of 15 A was employed to obtain the quasi-
spherical supercell. The MBE was truncated at the level of tetramers
for input generation, but calculations were run only on dimers
and trimers. With the intention of considering all possible two-,
three-, and four-body interactions in this system consistent with
the monomer cutoff, the COM, dimer, trimer, and tetramer cutoffs
were set to an arbitrary large distance so that the monomer cutoff
is the only distance-based filtering procedure to discard structures.
CrystaLattE was executed in the semiautomated Psithon mode.

B. Psi4 setup

All calculations were executed using Psi4 1.3al. Although
CrystaLatlE supports the Valiron-Mayer (or hierarchical) function
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counterpoise (VMEC)’® and the Boys and Bernardi counterpoise
(CP) correction,”””* for basis set superposition error treatment, they
were not used in these calculations. Instead, the HF-3¢c method con-
tains its own internal corrections for basis set superposition errors.
The self-consistent field (SCF) procedure was carried out using the
density-fitting approximation. The convergence criterion for the
SCF energy was set at 1078 a.u. to improve the numerical accuracy
of the results. The convergence criterion for SCF density, defined
as the maximum absolute value of the orbital gradient, was left
at 107 a.u.

V. RESULTS AND DISCUSSION

In this section, we present the results focusing first on software-
related details and then on the data obtained for the benzene crystal
using the HF-3c method.

A. Execution details

All tests described below were executed on a computer with an
Intel i7-3930K processor running at 3.20 GHz, with 6 physical cores,
and a total of 12 threads. The system also included 64 GB of total
RAM memory and a local RAID-0 array of scratch disks consisting
of three 7200 RPM hard drives.

The first step of the algorithm was the generation of the quasi-
spherical aggregate from the supercell structure. Immediately after,
the BFS algorithm was executed to identify all the monomers present
in this quasisphere. The BFS algorithm required 236 s and found 166
monomers in the aggregate.

The process continued by generating all possible dimers that
contain the reference monomer anchored in the central unit cell.
Then, the filtering process eliminated any replicas and stored only
the symmetry-unique dimers. 92 dimers were found to be repli-
cas of another dimer and 73 unique dimers were identified and
stored. The execution of this stage took 1 s. Next, all possible trimers
that contained the reference monomer were generated and analyzed
by the filtering scheme. 6400 trimers were found to be replicas of
another trimer and were discarded. 7130 symmetry-unique trimers
were found and stored. The trimers’ generation and filtering process
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took 203 s. We could refer to this as the input preparation time, and
we expect this to be longer in psithon mode than in psi4api mode,
considering that the psithon mode writes an input file to disk for
each N-mer.

Although we limited the execution of calculations at the level
of trimers, we wanted to explore how the process of generation and
filtering at the level of tetramers would work. Therefore, tetramer
structures were requested, but their corresponding calculations were
not run. CrystaLattE found 464 707 symmetry-unique tetramers and
270423 replicas that were discarded. The execution of the tetramers’
procedure took less than 35 h, including writing 464 707 input files
to a network attached file server.

It is worth noting that these numbers of structures were deter-
mined using the monomer cutoff exclusively. In practical terms, the
user would almost certainly request dimer, trimer, or tetramer cut-
offs that would be equal or shorter than the monomer cutoff. In
other words, no structures were being filtered out by any of these
N-mer cutoffs; thus, the number of unique structures was the maxi-
mum for a 15 A monomer cutoff. Figure 4 analyzes how the number
of structures of each type changes with respect to the monomer
cutoff.

The execution wall-clock time for each of these Psi4 HF-3c cal-
culations varies by a few seconds. A dimer calculation elapsed about
3 s, a trimer was around 30 s, and a tetramer would be approxi-
mately 5 min. If all outputs were run sequentially, adding up all the
wall-clock execution times for the whole set of dimer calculations,
the total elapsed time was under 4 min. The whole set of trimers
added up to under 60 h. We call this the sequential execution time.
However, these calculations would be routinely distributed among
multiple nodes allowing for significant reductions of the wall-clock
time required to complete this stage. Additionally, in more typical
applications, the number of trimers would be substantially reduced
using a trimer cutoff. In addition, if the computations were run in
priority order, the trimer computations could cease after the three-
body energy appeared to be converging. Finally, after execution of
all calculations, the extraction of data and computation of the MBE,
what we could call the postprocessing time, elapsed 39 s for dimers
and trimers.
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FIG. 4. Comparison of the number of structures with respect to the radius of the quasispherical supercell. Within a radius cutoff of 15 A, 166 monomers are detected, which
are then combined to form 73 unique dimers, 7130 unique trimers, and 464 707 unique tetramers. Distance-based N-mer cutoffs (see text and Fig. 3) may be used to limit

the number of N-mers actually computed.
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Disk usage in psithon mode varied depending on the level at
which the expansion was truncated. 18.8 MB was required to write
the Psi4 inputs of dimers and trimers, and 1.55 GB would be required
if the nontruncated set of all tetramers consistent with a 15 A
monomer cutoff were included. After execution of all the dimer and
trimer inputs, the total disk usage to store the generated outputs is
about 524 MB. Again, because we were not employing any N-mer
cutoffs, these are much larger than typical disk usage values.

B. Benzene crystal lattice energy with HF-3c

Figure 5 shows, in the logarithmic scale, the two-body energy
for each dimer [AEy of Eq. (2)] against the distance of separation
of the closest-contact between atoms of the two different monomers
(i.e., the dimer cutoff distance in CrystaLattE).

Note that there are conformations in which the closest-contact
separation of a given dimer is slightly longer than the monomer
cutoff. This is because the monomer cutoff is not taken from the
COM of the reference monomer, but from the center of the super-
cell. The reference monomer is the closest one to that point, but it is
not necessarily centered on the center of the supercell.

The distribution of the data in the plot resembles an exponen-
tial decay, indicating a major predominance of the closest separated
dimers. The first three dimers, the ones on the first shell surrounding
the reference monomer, contribute with interaction energies that are
about an order of magnitude larger than any of the other structures
in the plot. The two-body energies quickly vanish to <0.1 kJ mol™"
at distances longer than 6 A.

In addition, the vertical variation of the points with similar
separation values indicates that even though the distance between
dimers is the main contributing factor to determine the strength of
the two-body interaction, it is clearly not the only one. This reflects
that the orientation of the monomers with respect to each other, i.e.,
stacked, T-shape, coplanar, etc., can introduce significant variations

102 3 T T T T T T T T
10! : 3
10° ¢ . -

10t g Tt s 3

Absolute 2-body Energy [kJ mol™!]
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FIG. 5. Analysis of the individual dimer interaction energies. The absolute value of
the energy is plotted. The two-body interaction seems to decay quasiexponentially
with respect to the distance between the monomers. The interaction of the first
three dimers is about an order of magnitude stronger than any of the others.
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in the dimer interaction energy that can be as large as an order of
magnitude for equally separated dimers.

Because the separation between monomers in the dimer plays
a significant role in determining the two-body interaction energy, it
is reasonable to order the sum using the closest-contact separation
for each dimer. Figure 6 shows the partial lattice energy as the sum
of each dimer contribution, as calculated from Eq. (4), against the
closest-contact separation, or the distance that we use to define the
dimer cutoff.

Using the cutoffs described above, the total two-body contribu-
tion to the crystal lattice energy is —60.1 k] mol™*, according to HE-
3c. This value is only —4.8 k] mol™" off that reported by Kennedy et
al,” —55.3kJ mol ™", calculated using at the coupled cluster through
perturvative triples [CCSD(T)] complete-basis-set (CBS) limit with
alimited number of dimers. It is off by —2.5 k] mol ™" with respect to
the —57.64 reported by Chan and co-workers,” also estimating the
CCSD(T)/CBS limit, but with a slightly different methodology and a
more complete set of dimers. This is a remarkably small error con-
sidering the inexpensive computational cost of HF-3c compared to
that of CCSD(T)/CBS.

Figure 6 also shows a rapid convergence of the total two-body
contribution. The final value would be just <0.5 kJ mol™" different
if it was truncated at 8 A. Besides, the first three dimers contribute
~53.3 kJ mol™" or roughly 89% of the total two-body contribution
to the crystal lattice energy, reiterating the predominance of those
dimers that form the first shell surrounding the reference monomer.
Because their contribution is so large, it is likely that errors for these
three dimers dominate the overall error in the two-body term. This
is an important observation because it implies that a combined-
method approach could be practical and accurate: the error could
be reduced by employing a more sophisticated method for the first
several dimers and then HF-3c for the remainder.
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FIG. 6. Accumulation of two-body contributions to the lattice energy as a function
of the distance between monomers. The first three dimers, whose monomers are
separated by less than 2.5 A, account for roughly 89% of the total two-body con-
tribution. The subplot shows a zoomed-in view of the intermediate-separation to
long-separation region. Convergence to less than 0.5 kJ mol=" is achieved at a
dimer cutoff of 8 A.
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Figure 7 shows, in the logarithmic scale, the three-body energy
for each trimer [AEyx of Eq. (3)] against the distance of separation of
the longest of the three closest-contact distances between the atoms
on the three monomers (the trimer cutoff distance). We are using
a logarithm plot to help determine the rate of convergence of the
three-body energy contributions. However, here we take the loga-
rithm of the absolute value of AEyx because for trimers that energy
can be positive. Although there is more vertical variation than in the
case of dimers, the distribution of the points in the plot also resem-
bles an exponential decay, at least in the range below 20 A. This
points out again that the closest separated trimers are more relevant.
However, the comparison with the case of dimers is more complex
because there are three separation vectors between the monomers
and the energy depends upon all these distances. One interesting
observation is that long-range three-body interactions seem to level
off at about 10™* k] mol™'. This could reflect that these energies are
at or below the numerical precision set for these calculations.

Figure 8 shows the partial lattice energy as the sum of each
trimer contribution, also calculated from Eq. (4), against the closest-
contact separation. The sum is also ordered using the longest con-
tact separation among monomers of a trimer or what we denote
as the trimer cutoff distance. The total three-body contribution to
the crystal lattice energy is expected to be significantly smaller than
the two-body contribution. Using HF-3c with the chosen cutoffs,
the calculated value is 1.1 k] mol™!. That quantity is —2.6 kJ mol ™!
off the 3.7 kJ mol™! computed at mixed levels of theory including
CCSD(T)/CBS and ATM-corrected MP2/aug-cc-pVDZ by Kennedy
et al.” Although qualitatively correct, this is a larger error than that
of the two-body contribution. HF-3c will capture (approximately)
three-body exchange and induction/polarization, but it lacks any
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FIG. 7. Analysis of the trimer nonadditive interaction energies. The absolute value
of the energy is plotted. Below a trimer cutoff of 20 A, the nonadditive three-body
energy seems to decay exponentially with respect to the longest contact distance
between the monomers in a trimer. This again indicates that the most relevant
contributions to the lattice energy are generated by the closest-separated trimers.
However, after 20 A, the three-body nonadditive energies seem to even out below
10~ kJ mol~". The three-body interactions are generally weaker than the two-
body ones.
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FIG. 8. Accumulation of three-body contributions to the lattice energy as a function
of the longest contact distance between monomers in a trimer. Convergence to
less than 0.5 kJ mol~" is achieved at a trimer cutoff of 16 A. The three-body
contribution is extremely small compared to the two-body contribution for benzene.

description of three-body dispersion, which is the dominant three-
body effect in crystalline benzene.”””” As discussed in the litera-
ture, capturing three-body dispersion effects explicitly is challeng-
ing."***"" Simplified models, such as the ATM potential, have been
shown to be a useful alternative.” If we apply the ATM potential to
estimate the missing three-body dispersion, using a molecular ATM
constant of 82 657.65 a.u. from previous estimations using Density
Functional Theory-based Symmetry-Adapted Perturbation Theory
[SAPT(DFT)]*' and all trimers considered in our HF-3¢ computa-
tions, we obtain a value of 2.7 k] mol™'. This is quite similar to the
3.2 k] mol™ estimate for three-body dispersion reported by
Kennedy et al.”

Adding up both the dimer and trimer HF-3c contributions,
the computed crystal lattice energy of benzene is —59.0 kJ mol™".
Further adding the ATM estimate of three-body dispersion yields
-56.3 kJ mol™'. This value compares extremely well with the
reference MBE-computed crystal lattice energies of —51.6 and
—54.6 k] mol™! reported in 2014, using the same 138 K crys-
tal structure. Indeed, this level of agreement (differences of —4.7
and -1.7 kJ mol™", respectively), is remarkable, given the sim-
plicity of the HF-3c method with respect to the highly sophisti-
cated approaches used in the two studies from 2014. Our com-
puted crystal lattice energy is also just —1.0 k] mol™' from the
estimated experimental 0 K lattice energy, —55.3 + 2.2 kJ mol™?,
obtained by Chan and co-workers from experimental data and
corrected to remove zero-point effects, using a computed zero-
point energy.” Chan and co-workers estimated that the difference
in the lattice energy between the 138 K structure and the hypo-
thetical 0 K structure, due to geometry relaxation of the crystal
lattice and the gas-phase monomer, is —-1.32 + 0.1 kJ mol™ 1.
If we add this correction to our computed value to estimate
a 0 K lattice energy, we obtain —57.6 kJ mol™!, which is
2.3 kJ mol ™" below the experimental 0 K lattice energy.
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VI. CONCLUSIONS

We have introduced CrystaLattE, a software tool to automate
the computation of lattice energies of organic crystals, given a crys-
tallographic information file. CrystaLattE provides the possibility of
achieving pleasant parallelism in a dual-level fashion by distribut-
ing the independent multithreaded calculations among the avail-
able node resources. We used CrystaLattE to compute the lattice
energy of crystalline benzene with HF-3c¢, obtaining a value that is
off by just —4.4 k] mol™' from the high-level ab initio reference
value by Chan and co-workers.”* Adding a correction for three-body
dispersion using a simple Axilrod-Teller-Muto potential reduces
this error to —1.7 kJ mol™!. With this correction included, the error
vs the estimated 0 K experimental lattice energy is —1.0 kJ mol .
This level of agreement is fortuitous, given the simplicity of the
model, but encourages additional investigation. In future work, we
will employ CrystaLattE to obtain benchmark-quality lattice ener-
gies for a wide range of molecular crystals, and using those results,
we will examine the accuracy of HF-3c and various density func-
tional approximations for lattice energy predictions.

SUPPLEMENTARY MATERIAL

See the supplementary material for complete CrystaLattE input,
output, and analysis files for crystalline benzene with the HF-3c
method.
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APPENDIX A: NRE DESCRIPTOR AND UNIQUENESS

An interesting finding related to this study is that it is common
to find different structures that have identical NREs. We present one
of those cases in Fig. 9. These two trimers have NREs that match
up to 12 digits of precision (1112.571 923 330 761 hartree). Yet, their
distance in chemical space is significant, meaning that there is no
symmetry operation that can make these two structures equivalent.
A careful inspection of their conformations reveals that both trimers
are formed by the same dimer. However, the third monomer is
located in different positions in each trimer. In one case, the third
monomer acts as a donor in a T-shape conformation with one of
the other monomers, but in the other case, the third monomer is
the acceptor in the T-shape. This case proves that the NRE can
be used as a descriptor of dissimilarity, but it cannot determine
uniqueness.

ARTICLE scitation.orgl/journalljcp

(@) (b)

FIG. 9. The structures of two trimers (a) and (b) that have identical NRE, but are
not equivalent geometries. In both trimers, there are two monomers in identical
positions (yellow) and a third that is located on a different place on each trimer
(red, green). In trimer (a), the monomer in the back (yellow) has it hydrogen atoms
pointing toward the monomer in the front (red), forming a T-shape conformation;
whereas in trimer (b), the monomer in the front (green) has its hydrogen atoms
pointing toward the monomer in the back (yellow), forming an equivalent T-shape
conformation.

APPENDIX B: CHEMICAL SPACE EIGENVALUES
DETAILS

As already mentioned, the modified Coulomb matrix M
[Egs. (5) and (6)] is invariant to translations and rotations of one
N-mer vs another, which is an important property when applying
it to determine chemical uniqueness. If two N-mers are chemi-
cally equivalent, then the same matrix elements will be present in
their Coulomb matrices M and M’. However, we have not taken
steps to ensure that CrystaLattE generates chemically equivalent
N-mers using the same atom ordering. Here, we show that the mod-
ified Coulomb matrices are also invariant to permutations of atom
numbering.

If the ordering of atoms i and j is swapped between systems, M
and M’ will not be equal. To make the matrices equal, rows i and j
need to be swapped as well as columns i and j. This can be achieved
by right-multiplying M with the appropriate permutation matrix P
to swap columns i and j and left-multiplying by the transpose of P to
swap rows i and j,

P'MP =M. (B1)

Because the transpose of a permutation matrix, PT, is the
inverse of P, P'MP is a similarity transform of M, and so the eigen-
values of M will be preserved despite different atom orderings in M
and M'.
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