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ABSTRACT: Research within density functional theory (DFT) has
led to a large set of conceptual and computational methodologies to
explore and understand the electronic structure of molecules and
solids. Among the most commonly employed techniques in DFT are
those of hybrid functionals, which are capable of producing accurate
results for diverse properties, with notable exceptions. However,
other techniques have been proposed to address limitations in the
application of conventional hybrid functional techniques, especially
to cases where a single reference is insufficient to achieve a proper
description of the system of interest. In this paper we consider
several previous developments in the field for the combination of
local and nonlocal potentials and show that they can be formalized within the constrained-search Levy formalism, offering
routes and ideas for the development of (nontraditional) density functionals, especially for treating strongly correlated regions
of a molecule. The proposed formalism is centered around the idea of decomposing into domains the differential volume
elements that are present in the definition of the electronic repulsion operator, which is contained in the electronic Hamiltonian,
but this can also be applied to other operators as well. We show that the domain decomposition leads to a formulation that
allows for the combination of different theories: DFT, correlated wave function theory, and Hartree−Fock, among others. This
combination could accelerate the computation of electronic properties and allow for explicit inclusion, at the wave function
level, of correlation effects, as in configuration-interaction theory. Our discussion covers both single- and multideterminantal
methods. We demonstrate the approach through a simple application to the electronic structure of the methane and ethylene
molecules, in which nonlocal exchange is applied to a given set of atoms, or domains, with the remaining atoms modeled with
the local density approximation.

■ INTRODUCTION

Computing the electronic and conformational properties of
molecules and solids has been the subject of continuing
scientific efforts, with the main goals including speed-up of the
algorithms while maintaining or increasing accuracy. Density
functional theory (DFT) has played a significant role in this
regard,1 with its central objective being the determination of
the electronic density and ground-state energy. The
computation of electronic properties is often performed with
Kohn−Sham (KS) wave functions, which provide a proper
estimation of the kinetic energy and, through an XC functional
approximation, of the ground-state electronic energy.
A formulation that is often employed in periodic

calculations, to model crystals or solids with some degree of
disorder, and in isolated-molecule computations is that
proposed by Kohn and Sham.2 In this model, the auxiliary
electrons are subject exclusively to a local potential, which is
determined by the semiclassical electron−electron repulsion
(the Hartree potential), the exchange−correlation (XC)
potential, and the electron−nuclear attraction. The computa-

tion of orbitals in this model tends to be tractable by standard
high-performance computers. For molecules and solids,
however, the inclusion of portions of nonlocal exchange is
known to lead to improvements with respect to standard KS
density functional approximations, such as the XC LDA or
GGA, and orbital-free DFT methods,3,4 especially in the
accuracy of quantities such as ionization/affinity potentials,
optimal geometries, excitation energies, etc.
There are situations where some ability to compute nonlocal

exchange and/or including some explicit wave function
correlation (a truncated configuration-interaction expansion,
for example) is required.5,6 Examples in this matter include
molecular junctions7 (where a better description could be
achieved with hybrid functionals), transition metal complexes,8

and molecular dissociation,9−11 among others. In molecular
electron transport,12 revealing the effect of nonlocal
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interactions on the transmission spectrum of a molecular
bridge remains an open topic. For transition metal complexes,
explicit correlation, as in complete active space (CAS)
methods, can provide crucial information about the interaction
between the central transition metal atom and its ligands,13

and magnetic properties of the molecule. Complexes with two,
or more, mutually bonded transition metal atoms may even
require more efforts toward their satisfactory quantum-
chemical description.
In recent years, remarkable contributions have been made

regarding some of the issues we mentioned above.14−20

Toulouse, Savin, and collaborators21−24 have illustrated how
to introduce correlated wave functions to DFT algorithms.
Their method is based on range separation of the Coulomb
repulsion between the auxiliary electrons. This separation is
global, as it is applied in terms of the relative distances between
the electron coordinates. In this method, long-range
interaction is treated at the correlated wave function level,
while short-range contributions are modeled with a density
functional approximation (DFA). An advantage of this
approach is that the formalism is developed within the Levy
constrained-search framework, providing a formalism for the
exploration and development of alternative DFAs, which can
be applied to problems in electronic structure. A theory
derived from this framework was proposed recently by
Fromager and collaborators.25−28 But this approach is based
on site (or orbital) occupations instead of the electronic
density, in which the constrained search is applied to a single
site that is embedded in a Hubbard chain, allowing for a
description of strong correlation for the embedded site, as
demonstrated by numerical simulations. The resulting
eigenvalue equation for the embedded site involves a Hubbard
repulsion term and an embedding potential that is obtained
from a Hartree-XC function (in orbital-occupation space) that
needs to be estimated. To treat a region of interest with
correlated wave function methodologies, the Carter group29−31

has designed and implemented embedding techniques. Within
the fragment molecular orbital theory, Fedorov and
Kitaura32,33 have also demonstrated the possibility of treating
a region of a molecule with CAS methods. Miller and co-
workers34−36 also developed methods in this direction that are
based on projection operators. A powerful quantum-chemical
methodology has been proposed by the Gagliardi group,17

which can add dynamical correlation effects, via a density
functional, to multiconfigurational calculations.
The present work concerns dividing the electronic repulsion

operator for a molecule (or solid) into domains where one can
control the type of electron−electron interaction for each of
these domains: local, nonlocal, or correlated. By a correlated
interaction we refer to the interaction arising from the
inclusion of multideterminant wave functions that are created
by exciting selected molecular orbitals. We refer to the
theoretical framework described here as “domain separated
density functional theory” (DS-DFT). DS-DFT is mainly
based on three well-established tools: First, it uses the Levy
constrained-search method,37 which offers simple ways to
define density functionals. Second, DS-DFT is formulated by
employing the generalized Kohn−Sham (GKS) theory38 that
often leads to the development of range separated functionals
but can also lead, as we suggest, to domain-separated
interactions that can be treated as either local or nonlocal.
Third, it is also motivated by the work of Toulouse et al.21 and
Fromager et al.,25−28 which employs the Levy constrained-

search similarly as in GKS theory, but we pursue a different
focus, so explicit wave function correlation and/or Hartree−
Fock (HF) exchange can be introduced to study the domains
of interest in molecules and solids. We employ a trivial splitting
of the differential volume elements that are part of the
definition of the nonrelativistic Hamiltonian of the molecule
(or solid). In this splitting, we suggest that expansion into a
weighted set of volume elements can lead to a set of domain-
separated operators that allows us to use different levels of
theory to determine the electronic structure of the system of
interest. In contrast to embedding theories that have been
proposed in the literature, the methods presented in this work
do not require embedding potentials. Instead, they need
density-functional approximations that eliminate the local
“DFT” interaction in the regions where nonlocal exchange or
explicit electron correlation (wave function excitations) is
applied. The domain separation may be performed in terms of
space or energy, and it can lead, as discussed herein, to a vast
family of algorithms to control explicit wave function
correlation and the desired treatment of electron−electron
interaction; this also includes the possibility of employing
hybrid functionals for some domains while applying semilocal
DFAs to others. For a choice of domain separation scheme, i.e.,
by choosing the proper weighing functions and with
knowledge of the exact functionals, the formalisms we present
here are exact in principle.

■ DOMAIN SEPARATION FOR A REGION OF
INTEREST

In this section we consider the admixture of a DFT method (or
DFA) with a wave function based technique (Hartree−Fock,
or coupled cluster, for instance). Here the objective is to apply
the wave function method to a single spatial region of interest
and treat the complementary spatial domain to the region of
interest with a DFA. The generalization to multiple domains is
straightforward and will be briefly summarized in the
Discussion section. Although the theory can be formulated
in first quantization (in the Supporting Information we include
some operators in this notation), we use second quantization
as it is preferred for the development of correlated wave
function methodologies.
The electron interaction operator is the object responsible

for the explicit correlation in post-Hartree−Fock calculations.
This operator can be written as follows:

∫ ψ ρ ψ̂ = ′ ̂ ′
̂

| ′ − |
̂ ′†W r r r

r
r r

r
1
2

d d ( )
( )

( )3 3
(1)

where the density operator is ρ̂(r) = ψ̂†(r) ψ̂(r). Explicit (wave
function) correlation, associated with this operator, is
necessary to achieve high accuracy in electronic structure
calculations, especially for strongly correlated systems (such as
organometallic compounds for which standard DFAs perform
poorly).
In the simplest domain decomposition one can consider, the

electron−electron interaction is divided into an explicit
operator for the region of interest (X) and a different one
for the complementary region (X̅), which is modeled with a
density functional approximation. In this case we only
introduce an explicit Coulomb repulsion for domain X, and
all the other interactions (kinetic and electron-nuclei) are not
separated into domains. We thus define the following domain-
screened interaction operator:
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∫ μ μ ψ ρ ψ̂ = ′ ̂ ′
̂

| ′ − |
̂ ′†W r r r

r
r r

r
1
2

d ( ) d ( ) ( )
( )

( )X X X (2)

where dμX is the differential measure:

μ = wr r rd ( ) d ( )X X
3

(3)

In the above equation wX(r) is a weighing function, which is
preferably close to the unity inside the molecular domain X
and close to zero otherwise. This function (wX) can be
conveniently defined in terms of Gaussians or other
distribution functions that can allow for analytical computation
of electron repulsion integrals. We thus assign the operator ŴX
to the region that needs to be studied with nonlocal exchange
or explicit correlation. The complementary region is assumed
to be modeled with a local effective potential, so the Coulomb
operator ŴX̅ is not needed for such region in practice.
More generally, the differential volume element can be

decomposed into contributions from several domains. This can
be used to generalize the theory discussed in this section to
multiple domains or to develop formalisms to perform
calculations within a fragment-based approach (by carrying
out separate DFT or wave function calculations that are
postprocessed to generate quantum chemical information
about the system of interest5). This is briefly explored in
Appendix A.
To derive density-functional approximations for the

complementary domain X̅, we introduce a density functional
that includes the interaction operator that leads to explicit
wave function correlation in domain X or allow for the
application of nonlocal exchange to that domain, as we discuss
below. This density functional reads

ρ[ ] = ⟨Φ| ̂ + ̂ |Φ⟩
ρΦ→

Φ∈

G T WminX Xl,
(4)

where T̂ is the kinetic energy operator

∫ ψ ψ̂ = ∇ ̂ ·∇ ̂†T r r r
1
2

d ( ) ( )3
(5)

is a space of wave functions, for example, the space of Slater
determinants ( ) or the space of fully correlated wave
functions ( ). If = , we use the index l = s, and for the
case = , we employ l = w to indicate search over
correlated wave functions. The symbol ρ represents a given
(physically meaningful) electronic density of the system. The
constrained search that defines Gl,X is a minimization under the
condition that the wave functions considered must satisfy
⟨Φ|ψ̂†(r) ψ̂(r)|Φ⟩ = ρ(r) for all points in space. The above
functional can be regarded as a variation of the constrained
search defined within generalized KS theory38 for the case of
single determinants and of the method of Toulouse et al.21 for
DFT calculations based on multiple determinants and (global)
range separation of the Coulombic electron repulsion.
The energy functional Gl,X has contributions from the kinetic

energy of the auxiliary electrons, and another contribution
from the domain-screened interaction ŴX. In the following
sections we express the total electronic energy functional in
terms of Gl,X, a residual energy functional that we refer to as
partial Hartree-exchange−correlation (HXC) energy, and the
electron−nuclei attraction energy. The partial HXC energy is
associated with the electron−electron repulsion energy of the
complementary region X̅. This partial HXC energy is required
due to the functional Gl,X accounting for an amount of the total

electron−electron interaction energy that corresponds to
region X.
The minimization shown on the right-hand side of eq 4 can

be solved using the Lagrange multiplier method (Appendix B).
This gives rise to a local potential (which is in turn a
multiplier) that can be computed by adding to the electron−
nuclei interaction the functional derivative of the partial HXC
energy functional (Appendix B). In the next subsections we
discuss the derivation of these functionals.

Expressions for Functionals Based on Single Deter-
minants. In this subsection we suppose that = . Now, let
us define the usual Levy functional:

ρ[ ] = ⟨Ψ| ̂ + ̂ |Ψ⟩
ρΨ→

F T Wmin
(6)

Comparison between the above functional and Gs,X leads us to
the partial HXC functional:

ρ ρ ρ̅ [ ] = [ ] − [ ]E F G XHxc
s

s, (7)

This functional is the HXC energy associated with domain X̅,
and it depends on the specific form of ŴX, which is determined
by the measure dμX(r) that has been selected to define the
molecular domain of interest. To express E̅Hxc

s in a more
convenient form, we first denote Φ̃ and Ψ̃ as the wave
functions that minimize the right-hand side of eqs 4 and 6,
respectively. These two functions can also be regarded as
functionals of the density (Supporting Information). Using
these wave functions, we can write the functional Gs,X as
follows:a

ρ ρ[ ] = ⟨Φ̃| ̂ + ̂ |Φ̃⟩ + [ ] − ⟨Φ̃| ̂ |Φ̃⟩G T W E WX
X

s, Hx
s,

(8)

where EHx
s,X[ρ] = ⟨Φ̃|ŴX|Φ̃⟩. In the above equation the term ⟨Φ̃|

Ŵ|Φ̃⟩ is trivially inserted. Given that F[ρ] = ⟨Ψ̃|T̂ + Ŵ|Ψ̃⟩, we
find that the functional E̅Hxc

s can be decomposed as follows:

ρ ρ ρ ρ̅ [ ] = [ ] − [ ] + [ ]E E E EX
Hxc
s

Hx
s

Hx
s,

c
s

(9)

where EHx
s [ρ] = ⟨Φ̃|Ŵ|Φ̃⟩. The functional EHx

s accounts for the
average electron−electron repulsion energy of the entire
system, while EHx

s,X quantifies such repulsion in the region
labeled X. Since the expectation value ⟨Φ̃|ŴX|Φ̃⟩ only has
Hartree and exchange contributions, the correlation energy
remains a global quantity. This object reads

ρ[ ] = ⟨Ψ̃| ̂ + ̂ |Ψ̃⟩ − ⟨Φ̃| ̂ + ̂ |Φ̃⟩E T W T Wc
s

(10)

It is important to note in this case that, due to the different
nature of the constrained search defining Gs,X, the energy
functionals EHx

s and Ec
s, strictly speaking, should be different

from those used in standard KS theory. There is no analogue
to EHx

s,X or E̅Hxc
s in KS-DFT. However, analytical formulas for the

mentioned functionals can be derived from the study of the
uniform electron gas. From a practical standpoint, assuming
one would like to apply an explicit DFA to the complementary
region, the functional E̅Hxc

s would allow us to derive a local
effective potential that would be felt not only mostly by the
auxiliary electrons in the complementary region but also by
domain X to a lower degree. In practical terms, this would be
advantageous to model regions of the molecule where a
standard KS DFA would perform well.
With the above formulas for the HXC energies, the ground-

state energy (for the X + X̅ system) may be obtained from
minimizing the functional Ev[ρ] = Gs,X[ρ] + E̅Hxc

s [ρ] + ∫ d3r
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v(r) ρ(r), where v(r) is the electron-nuclei attraction potential.
By applying the minimization principle, we have (Appendix B):

{ }ψ ψ− ∇ + ̂ − ̂ + ̅ + = ϵj k u vr r r r
1
2

2 ( ) ( ) ( ) ( )X i i i
2

xc
s

(11)

where {ψi} are the occupied orbitals of the system, j ̂ is the
Coulomb operator,

∫ψ
ψ

ψ̂ = ′
∑ | ′ |

| − ′|

i

k

jjjjjjj
y

{

zzzzzzzj r r
r

r r
r( ) d

( )
( )i

j j
i

3
2

(12)

where the summation is carried out over all the occupied
orbitals, and k̂X is a domain-screened exchange operator:

∫∑ψ μ
ψ ψ

ψ̂ = ′
′ ′

| − ′|

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
k wr r

r r

r r
r r( ) d ( )

( ) ( )
( ) ( )X i

j
X

i j
X j

(13)

In this formula real-valued orbitals are implied. The potential
u̅xc
s reads (Appendix B)

δ
δρ̅ = ̅

u
E

r
r

( )
( )xc

s xc
s

(14)

where E̅xc
s is obtained by removing the Hartree contributions

from eq 9:

∫
ρ ρ

μ μ ρ ρ
̅ [ ] = ̅ [ ]

− [ ′ − ′ ] ′
| ′ − |

l
mo
no

|
}o
~o

E E

r r r r
r r

r r
1
2

d d d ( ) d ( )
( ) ( )

X X

xc
s

Hxc
s

3 3

(15)

With an approximation to the energy functional E̅Hxc
s , the above

would lead to an estimate of the local potential u̅xc
s . In our

theory the orbitals would be computed in a fashion similar to
that in a standard hybrid functional (or a correlated-wave
function) algorithm, but with differences in the construction of
the energy matrices, as we discuss later on.
Expressions for Functionals Based on Correlated

Wave Functions. Here we follow steps analogous to those
discussed in the previous subsection, but with differences in
detail, with the objective now being the study of the region of
interest with explicit wave function correlation, and the
derivation of the eigenvalue problem that has to be solved to
estimate the auxiliary wave function of the system and related
properties.
We start with the constrained-search functional, Gw,X, which

is defined over the space of fully correlated wave functions (eq
4), so = . It is convenient to introduce a HXC functional
for the region X, as it is an object that can be approximated. To
this end, we first introduce the usual KS kinetic energy
functional:

ρ[ ] = ⟨Φ| ̂|Φ⟩
ρΦ→

Φ∈

T Tmins
(16)

where the search is performed over the space of Slater
determinants. With this definition, we introduce the HXC
functional for region X:

ρ ρ ρ[ ] = [ ] − [ ]E G TX
XHxc

w,
w, s (17)

This functional has properties similar to those of the standard
HXC functional of KS-DFT. Let us denote Φ̃w and Φ̃0 as the
wave functions that solve the constrained searches defining

Gw,X[ρ] and Ts[ρ], respectively. The functional EHxc
w,X[ρ] can be

written as the sum

ρ ρ ρ[ ] = [ ] + [ ]E E EX X X
Hxc
w,

Hx
w,

c
w,

(18)

where EHx
w,X[ρ] = ⟨Φ̃0|ŴX|Φ̃0⟩, and Ec

w,X[ρ] = ⟨Φ̃w|T̂ + ŴX|Φ̃w⟩
− ⟨Φ̃0|T̂ + ŴX|Φ̃0⟩. These two functionals together account for
the net electron−electron repulsion (including Hartree and
XC effects) in domain X. The way the functional EHxc

w,X[ρ] is
expressed, in terms of Ts, can be applied to the single-
determinantal case discussed in the previous subsection; this is
presented in the Supporting Information.
Now, the partial HXC energy for the complementary

domain (X̅) is written as

ρ ρ ρ ρ ρ

ρ ρ

̅ [ ] = [ ] − [ ] − [ ] − [ ]

= [ ] − [ ]

E F T G T

E E

( ) ( )X

X

Hxc
w

s w, s

Hxc Hxc
w,

(19)

where EHxc is the traditional HXC energy functional from KS
theory. Note that the KS kinetic functional (Ts) is trivially
inserted in the above equation. It, however, allows us to
express the partial energy E̅Hxc

w in terms of HXC energies,
where the energy EHxc

w,X[ρ] is an object that needs an
approximation.
Using the above definitions, and analogously to the way we

proceeded in the previous section, the ground-state energy
functional reads

∫ρ ρ ρ ρ[ ] = [ ] + ̅ [ ] +E G E vr r rd ( ) ( )v Xw, Hxc
w 3

(20)

In a fashion similar to that in the work of Toulouse et al.,21 the
minimization of the above density-functional can be solved
through self-consistent solution of the equation (Appendix B):

{ }∫ ρ̂ + ̂ + [ + ̅ ] ̂ |Φ ⟩ = |Φ ⟩T W v u Er r r rd ( ) ( ) ( )X
3

Hxc
w

w w

(21)

where Φw is a correlated wave function and u̅Hxc
w is obtained

through functional differentiation:

δ
δρ̅ = ̅

u
E

r
r

( )
( )Hxc

w Hxc
w

(22)

In eq 21, the operator ŴX, through orbital screening and
within a configuration-interaction (or coupled cluster) picture,
determines which orbital excitations need to be considered to
construct the state |Φw⟩. For example, excitations that involve
promotion of orbitals that are far enough from domain X can
be neglected (because the operator ŴX is the object that
couples these excitations, and it can be neglected in regions
away from the domain determined by the weight wX). In
practice, for instance, this would lead to a reduced truncated
CI space with respect to what would have been obtained if the
entire system were treated with a CI method. Other
possibilities would involve reduced excitation operators in
coupled-cluster calculations. It is important to note that the
solution of eq 21 should be performed self-consistently, and eq
37 can be used to construct the reference determinant(s).
To summarize, in practice, the elements that are needed to

perform calculations using the present theory are (i), a choice
of wX that determines the domain of interest, X, (ii) an
approximation to both density functionals EHxc[ρ] and EHxc

w,X[ρ],
and (iii) a wave function methodology such as coupled cluster
or complete active space, for example, to solve eq 21. To select
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the weighing function, wX, we can choose domain X as a region
of space where explicit correlation is required, and this weight
(or domain function) could be based on linear combinations of
Gaussian functions, as mentioned earlier. In addition, regarding
the second item, a standard approximation could be chosen to
the functional EHxc, whereas development of an estimate to
EHxc
w,X is required. The mentioned points will be the subject of

future work. The theory presented in this subsection is
different from the previous one in that excited orbitals are
needed to create the multideterminantal expansion of the
ground-state auxiliary wave function, which in turn is required
to evaluate the ground-state energy of the total system.

■ EXAMPLE AND DISCUSSION
Application of the Method Based on a Single

Determinant. In this section we apply, with some
approximations, the method based on single determinants
and treat a region X of a molecule with (nonlocal) HF
exchange, and the rest (the complementary region to X, which
we refer to as X̅) with the local density approximation (LDA).
This combination of HF with a local DFA is of relevance for
the construction of the reference determinant(s) needed to
solve eq 21 (the solution of this equation will be the subject of
future work). The examples are presented in order to illustrate
the concepts introduced in the previous sections and to
examine how adding HF exchange to hydrogen or to a carbon
atom affects ground-state properties. A practical advantage of
combining HF and LDA is the implication that, a hybrid
functional assigned to certain domain could be combined with
a GGA functional assigned to a different domain, which would
be useful, for instance, to study molecular processes on
electrode surfaces. This is where the application of a hybrid
functional to the molecule’s domain can eliminate charge
delocalization.
Figure 1 shows two different domain decompositions for

two different molecules, methane, and ethylene; we compute

the electronic structure of these molecules separately. For the
methane molecule, domain X consists of the carbon atom,
whereas for ethylene the four hydrogen atoms define region X.
We suppose that the function that defines region X is the
weight wX(r), and we employ it implicitly, as shown below.
In the atomic orbital basis, the exchange matrix has the form

∫ μ μ ϕ γ ϕ= ′ ′ ′
| − ′|μν μ νK r r r

r r
r r

rd ( ) d ( ) ( )
( , )

( )X X X, (23)

where {ϕμ} is the basis set, γ(r,r′) is the density matrix defined
as ∑jψj(r′) ψj(r), and the sum is performed over the occupied

energy levels of the molecule. Now we define the following
weighted density matrix:

γ γ′ = ′ ′w wr r r r r r( , ) ( ) ( ) ( , )X X X (24)

For the sake of the illustration, we assume that this function
can be approximated as

∑γ ϕ ϕ′ ≈ ′
μν

μν μ ν
∈

Dr r r r( , ) ( ) ( )X
X

X ,
(25)

where DX,μν is the density matrix in atomic orbital space: DX,μν
= ∑jCμ

j Cν
j , if both indices μ and ν are associated with the atom

(or atoms) contained in region X; otherwise, DX,μν = 0 (the
LCAO coefficients are denoted as {Cμ

j }). Hence, we
approximate the exchange matrix as follows:

∫ϕ ϕ ϕ
γ

ϕ= | ̂ | ≈ ′ ′
′

| − ′|μν μ ν μ νK k r r r
r r

r r
r( ) d d ( )

( , )
( )X X

X
,

3 3
(26)

and the exchange energy for domain X reads

∑=
μν

μν μνK D KX X ,
(27)

where D is the standard (electronic) density matrix of the
molecule Dμν = ∑j Cμ

j Cν
j , where the indices μ and ν run over

the entire basis set.
To approximate the LDA exchange energy of domain X, we

simply use the density ρX(r) = 2γX(r,r), and evaluate the Dirac
exchange term at this density. Therefore

∫ρ ρ= [ ] = −E E c r rd ( )X
X Xx

s,
x
LDA

x
3 4/3

(28)

where cx = (3/π)1/3 × (3/4) . The density ρX is a functional of
the total density of the system. In principle, the functional
derivative of the above exchange energy could be computed as

∫δ
δρ

δ
δρ

δρ
δρ

= ′
′

′E E
r

r
r

r

r( )
d

( )

( )

( )

X X

X

Xx
s,

3 x
s,

(29)

For numerical simplicity, however, we assume that

δ
δρ

=u
E

r
r

( )
( )

X
X

X
x
s, x

s,

(30)

As an alternative form of eq 15, the partial XC energy reads

ρ ρ ρ ρ̅ [ ] = [ ] − [ ] + [ ]E E E EX
Xxc

s
x x

s,
c (31)

and the partial XC potential that we include in the single-
particle Schrödinger equation (eq 37) is

̅ = −u u ur r r( ) ( ) ( )X
xc xc x

s,
(32)

where uxc is a standard XC potential from KS DFT. Finally, the
ground-state energy is evaluated as

∫∑ ψ ψ ρ

ρ

= − ∇ + + [ ]

− + ̅ [ ]

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ

E f v E

K E

r r r rd ( )
1
2

( ) ( )
i

i i i

X

0
3 2

H 0

xc
s

0 (33)

where ρ0(r) = ∑i f i|ψi(r)|
2 is the ground-state electronic

density, f i = 2 for occupied levels, and EH is the standard
Hartree energy functional.
To summarize, the approximations we use are (i) the LDA

for the functionals Ec, Ex
s,X, and Ex; (ii) eqs 25 and 26; and (iii)

the functional derivative expressed in eq 30.

Figure 1. Ball-and-stick representation of a methane (left) and an
ethylene (right) molecule, with domains indicated.
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We refer to the computations performed with the technique
presented above as domain-separated LDA calculations with
nonlocal exchange (LDA-nLE).b

For these calculations we employ the VWN-5 functional for
the correlation energy39 and Dirac exchange40 (the geometries
of these molecules were obtained from optimizations using the
program NWChem41 and the basis set 6-31G*). The basis set
we use is 6-31G and convergence criterion 1 × 10−8 au for the
total energy. The present computations were performed with
the PyQuante suite.42 Furthermore, to determine the differ-
ence between an orbital computed with theory level TA and an
orbital calculated with theory TB, we use the L2 norm:

∫ψ ψ ψ ψ ψΔ = − = −
Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ( )r r r2 1 d ( ) ( )j j j j j

T T

2

3 T T
1/2

A B A B

(34)

The eigenvalue solver can change the sign of the orbitals
computed with a different theory level. For this reason, we
compute the inner product using the molecular vectors
produced by the eigenvalue solver and then change the sign
of one of the orbitals and recompute and report the lowest
value for the deviation.
Table 1 shows the results of applying our simplified method

to the methane and ethylene molecules. For these molecules,
we note that the orbital arrangement is preserved for all the
levels considered. Interestingly, for the two molecules we note
that the numerical values of the exchange energies KX and Ex

s,X

are relatively close, with KX being slightly larger in absolute
value than Ex

s,X. This feature is due to the general trend by the
Dirac exchange approximation to underestimate the exact
exchange energy, leading to the well-known self-interaction
error.
For the methane molecule we note that the orbital-energy

level ordering is preserved after applying nonlocal exchange to
the carbon atom. The highest occupied level is 3-fold
degenerate, whereas the level right below it is nondegenerate,
and this agrees with both the HF and LDA calculations.

Regarding unoccupied levels, the lowest level is nondegenerate
in our LDA-nLE, in agreement with the reference calculations.
The 3-fold degeneracy of the level above the lowest
unoccupied one is also preserved. For the ethylene molecule,
the levels shown in Table 1 are nondegenerate, and the orbitals
are close to the LDA orbitals (as confirmed by the comparison
reported in Table 2, this is discussed below). In addition,
because in this case we apply nonlocal exchange for the
hydrogen atoms, potentially, this domain separation leads to
some elimination of the self-interaction error (note that KX is
also larger than −Ex

s,X). We also observe that the LDA-nLE
orbital eigenvalues are quite close to the LDA ones. This might
be due to the low number of electrons being treated with HF
exchange in the ethylene molecule, whereas in the methane
this number is higher: for methane the density ρX integrates to
5.8 while in ethylene ∫ d3r ρX(r) = 2.7.
In Table 2 we compare some LDA-nLE orbitals with HF

and standard LDA orbitals. For the methane calculations, we
observe that the considered LDA-nLE orbitals are closer to the
HF orbitals than to the LDA ones (as the differences between
LDA-nLE and LDA orbitals are similar to HF/LDA differ-
ences). In both comparisons, we note that the LDA-nLE
orbitals, in terms of orbital energy, lie between pure LDA and
pure HF orbitals, in agreement with the results presented in
Table 1. As mentioned above, the LDA-nLE orbitals for
ethylene are close to the LDA ones. The orbital energies
computed with our method, however, are not expected to be
an arithmetic average of LDA and HF orbital energies.
As an additional test of consistency for the calculations

presented in this subsection, we computed the hydrogen
dissociation energies for the two molecules:

→ +

→ +

CH CH H

C H C H H
4 3

2 4 2 3 (35)

The dissociation energy is determined as the sum of ground-
state energies of the hydrogen atom and the corresponding
radical minus the energy of the methane or ethylene molecules.

Table 1. Orbital Energies, Exchange and Ground-State Energies, and Hydrogen Dissociation Energies (DEH) for the Methane
and Ethylene Molecular Models Shown in Figure 1a

CH4 C2H4

theory level HF LDA LDA-nLE HF LDA LDA-nLE

ϵH−1 −0.944 (I) −0.617 (I) −0.709 (I) −0.494 −0.302 −0.301
ϵH −0.542 (III) −0.341 (III) −0.316 (III) −0.374 −0.240 −0.171
ϵL 0.254 (I) 0.094 (I) 0.189 (I) 0.175 −0.020 0.061
ϵL+1 0.322 (III) 0.146 (III) 0.251 (III) 0.260 0.091 0.181
ϵL − ϵH 0.796 0.435 0.505 0.549 0.260 0.232
KX 4.966 0.586
−Ex

s,X 4.301 0.420
Eground −40.180 −40.090 −40.735 −78.003 −77.803 −77.928
DEH (eV) 4.67 5.55 6.18 4.81 5.44 5.73

aDegeneracy indicated with Roman numerals. Energies expressed in atomic units, except DEH, which is expressed in eV units.

Table 2. Comparison (Determined with Eq 34) between Frontier Orbitals Computed with Different Theories

CH4 C2H4

TA/TB LDA-nLE/HF LDA-nLE/LDA HF/LDA LDA-nLE/HF LDA-nLE/LDA HF/LDA

ΔψH−1 0.033 0.085 0.009 0.074 0.061 0.021
ΔψH 0.071 0.103 0.119 0.033 0.007 0.040
ΔψL 0.015 0.062 0.062 0.118 0.002 0.116
ΔψL+1 0.036 0.089 0.095 0.083 0.053 0.075
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The geometry of the methyl and vinyl radicals were kept frozen
with respect to the geometries of their counterparts, so a
hydrogen atom is simply eliminated from the methane and
ethylene geometries. For these radicals we apply the domain-
separation procedure we described in this subsection, but in
spin-polarized form (in the Supporting Information we show
additional details). The energy of the hydrogen atom is
calculated with the same technique used for the molecule. For
the dissociation energy calculation of the methane molecule,
the ground-state energy of the hydrogen atom is computed
with the Schrödinger equation with basis set 6-31G. But, for
the case of ethylene, we included the correlation energy in the
single hydrogen atom calculation.
As a same-basis reference we calculated the hydrogen

dissociation energies with the CCSD(T)/6-31G technique,
and with the NWChem program.41 These energies are 5.28
and 5.29 eV for methane and ethylene, respectively. For both
molecules we observe the computation with the LDA XC
functional yields dissociation energies close to the CCSD(T)/
6-31G values. In contrast, the LDA-nLE method, with the
approximations made, produces results with a net deviation
similar to that of Hartree−Fock/6-31G. While the latter
underestimates the dissociation energies computed with
CCSD(T) or LDA, the LDA-nLE results somewhat over-
estimate these numbers; such deviations can be corrected with
the proper use of a domain function (wX) and with better
DFAs, as discussed below. We remark that, nonetheless, the
domain separation approach produces physically meaningful
results. The relatively moderate deviations, in combination
with the other results presented in Tables 1 and 2, suggest the
mixing of local and nonlocal exchange can potentially lead to
orbitals and ground-state energies with properties similar to
those that can be obtained from standard density functional or
Hartree−Fock calculations.
The domain functions need to be included in order to

perform computations that work in accordance to the DS-DFT
formalism we discussed in this work. For example, we
considered a domain X consisting of the two carbon atoms
in ethylene and found that the imbalance between the
approximated Dirac and the nonlocal exchange for domain X
leads to the C−C σ orbital being the HOMO instead of the π
orbital. In the present model we do not explicitly account for
the domain function (wX). Given the approximate nature of the
steps we followed for these LDA-nLE calculations, this
imbalance between the operators k̂X and ux

s,X causes differences
in the orbital-energy arrangement. As more electrons are
computed with nonlocal exchange, a better estimation of the
functional Ex

s,X is required to ensure proper elimination of
“DFT” exchange effects in the region of interest, so nonlocal
exchange k̂X is applied instead (including the domain function
explicitly), and without modifying orbital level ordering. The
proper balance can be accomplished by examining the domain-
screened exchange energy in the electron gas limit, expressing
it as a functional of density and then applying it to problems of
interest. This will be subject of future work.
For problems where the application of hybrid-functional

methods is sufficient, domain separation could also be useful to
reduce computational costs. In such a case, the constrained
search is defined in terms of the expectation value of the
operator T̂ + λŴX, and the corresponding partial HXC energy
has the form E̅Hxc

s [ρ] = EHxc[ρ] − λEHx
s,X[ρ], where λ is the

amount of HF exchange and Hx is the energy for domain X,
which in this case formally reads EHx

s,X[ρ] = ⟨Φ̃[ρ]|ŴX|Φ̃[ρ]⟩.

As in the previous section, no correlation energy needs to be
subtracted from the standard HXC energy (EHxc). The ground-
state energy in this case can be written as follows:

∫∑λ ψ ψ ρ

λ ρ λ ρ

= − ∇ + + [ ]

− + [ ] − [ ]

Ä

Ç
ÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑ

E f v E

K E E

r r r r( ) d ( )
1
2

( ) ( )
i

i i i

X
X

3 2
H 0

xc 0 x
s,

0 (36)

And the equation for the orbitals is similar to eq 37:

{ }λ λ ψ

ψ

− ∇ + ̂ − ̂ + − +

= ϵ

j k u u vr r r r

r

1
2

2 ( ) ( ) ( ) ( )

( )

X
X

i

i i

2
xc x

s,

(37)

To compute the energy E(λ), we applied the same
approximations (LDA for XC functionals, density matrix, and
functional derivative approximations) and adapted the steps
discussed in the previous section.
To examine the effect of applying only a fraction of nonlocal

exchange to the X-domains defined for the methane and
ethylene molecules, we computed the total ground-state
electronic energy as a function of λ, Figure 2. With respect

to the LDA energies, we observe that the total ground-state
energy almost linearly decreases as a function of λ. This near
linearity indicates, besides the positive possibility of admixing
with our method a hybrid functional with a local one, that for
low values of λ quantities such as ground-state energies, orbital
level ordering, etc. will be close to their LDA counterparts, so
the domain separation is a smooth process. For instance, with
λ = 1/4 we note that the hydrogen dissociation energy of
methane and ethylene are estimated as 5.65 and 5.59 eV,
correspondingly. In contrast with global quantities, however,
properties sampled specifically from the region treated with the
hybrid functional should behave as expected, using as reference
traditional calculations with supramolecular hybrid functionals.
For methane, because nonlocal exchange is assigned to the

carbon atom, via elimination of the self-repulsion, only a
fraction of nonlocal exchange is required to obtain an energy
close to CCSD(T)/6-31G. For ethylene, the difference

Figure 2. Difference between the hybrid LDA-nLE energy and the
LDA energy vs amount of nonlocal exchange. Purple lines/solid-
circles correspond to methane calculations and black lines/solid-
circles to ethylene, the horizontal purple line indicates the CCSD(T)
energy for methane, while the black horizontal line the CCSD(T)
energy for ethylene.
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between CCSD(T) and LDA energies is larger. Given that
nonlocal exchange is assigned to the hydrogen atoms in
ethylene, even a 100% amount of this exchange is insufficient
to obtain an energy closer to the reference CCSD(T) value.
Further Extensions. The domain separation methods we

described so far are applicable to mixing standard KS
calculations with tight-binding DFT. For such a case, we
could decompose the kinetic energy operator as T̂ = ∑XT̂X,
where T̂X = (1/2)∫ dμX(r)∇ψ̂†(r)·∇ψ̂(r). One (or more) of
these operators can be replaced by K̂TB,X =∑μν∈X tμνcμ̂

†cν̂, where
cν̂ destroys an electron with orbital ν (where the indices run
over atomic orbitals associated with domain X). This implies
that the resulting correlation energy will have an important
kinetic contribution that should be approximated appropri-
ately, and this contribution must ensure that the electronic
density of the whole system is properly described. This could
have applications, for instance, in the study of molecules that
interact with nanoparticles, where regions (like the nano-
particles) that are computationally demanding for standard
DFT techniques (or DFAs) could be treated with tight-binding
techniques, whereas the rest of the system could be modeled
with higher-level methods such as standard KS-DFT or hybrid
functionals. Domain separation in this context also implies that
the region being modeled with a tight-binding approach has
associated with it a local potential that has Hartree and XC
components.
In addition to the above discussion, there is a diverse set of

possibilities to employ weighing functions in alternative
calculations and formalisms. For example, instead of
partitioning the differential volume, one can split the
creation/annihilation operators as ψ̂(r) = ∑Xψ̂X(r), where
ψ̂X(r) = wX(r) ψ̂(r), express the Hamiltonian in terms of these,
and use them to formulate new theories and methods.
To extend the theories described in previous sections to the

time-dependent regime, and approach outstanding issues in the
modeling of electron dynamics in strongly correlated
systems,43 a starting point is the variational principle applied
to the action functional:

∫
∫ ρ

[Φ] = ⟨Φ | − ̂ − ̂

− ̂ |Φ ⟩

A t t
t

T W

v t tr r r

d ( ) i
d
d

d ( , ) ( ) ( )

X

3
l (38)

where Φ ∈t( ) . For wave function propagations, within the
adiabatic approximation, for example, the local potential reads

δ ρ
δρ

= ̅ [ ′]
′

+ +
ρ ρ′=

v t
E

v v tr
r

r r( , )
( )

( ) ( , )
tr

l
Hxc
l

( , )

0 D

(39)

where v0(r) represents the electron-nuclei attraction and vD is
some external perturbation. In the case the stationary point is
sought in the space of correlated wave functions, the resulting
TD equation is a simple extension of eq 21. For estimation of
photoabsorption/emission spectra, the TD problem can be
analyzed within the linear-response regime (for a weak driving
field vD), which would lead to an RPA-like equation that would
include explicit wave function correlation (or nonlocal
interactions if a single-determinantal approach is pursued).
The measure dμX can be based on linear combinations of

Gaussian functions. Integrating such a measure into current
computational packages requires some adaptation of routines
designed to compute electron-repulsion integrals (ERIs). We

believe, however, that the resulting ERIs may be performed
analytically. The rule stating that the product of Gaussian
functions is a recentered Gaussian may be invoked to expand
the corresponding weighted ERIs. Starting from a product of s-
type Gaussian and its analytical ERI, one can take nuclear
derivatives in order to find the formulas for integrals involving
other types of Gaussians (p, d, etc.).
The methodologies we discussed in the previous sections for

the case of two domains are generalizable to multiple ones. In
general, the constrained search with the proper interactions
included defines which regions are treated with nonlocal
exchange,and which domains will be studied with wave
function correlation. For example, one could start with a
constrained-search functional (similar to Gl,X) based on the
operator T̂ + ∑XŴX:

∑ρ[ ] = ⟨Φ| ̂ + ̂ |Φ⟩
ρΦ→

Φ∈

G T Wmin
X

Xl
(40)

and follow the steps we discussed in this work to derive the
corresponding, partial HXC energy functionals. The summa-
tion over potentials {ŴX} would be performed over the
multiple domains of interest. For example, in a periodic
calculation of a supercell with several transition metals, the
domains might be defined as spheres (but with smooth domain
functions), or other shapes, around such metal atoms. In this
matter, the calculations would share similarities with our
computations modeling the electronic structure of the ethylene
molecule.
The domain separation technique is also applicable to the

energy or momentum space, which could be useful to separate
core levels from valence ones (for instance, by assigning an
orbital-free method to the core electrons, while the remaining
electrons are modeled with KS DFT). To show this, it is
sufficient to recall that the Hamiltonian of the system can also
be written in terms of wave-vector-space volume elements.
Therefore, the element d3k is conveniently expressed as
∑Zdμ̃Z(k), where dμ̃Z(k) is now a measure with a weighing
function in the wave-vector space, that also defines a domain,
Z, in this space. With this idea, for example, frontier orbitals
would be subject to nonlocal exchange, whereas the remaining
levels to LDA exchange.

■ CONCLUSION
We presented a new variation of recent developments in the
field of density functional theory that enables domain-
separated calculations. The proposed formalism, DS-DFT,
uses measures, or domain functions, that define regions of a
molecule or solid that may be studied by different types of
electron interaction operators (and thereby different levels of
theory). This also leads to the possibility of performing
calculations with multiple determinants, or references. For
practical implementation of these methods, density functional
approximations are needed to estimate, and subtract from the
global HXC energy, the “DFT” Hartree-exchange or HXC
energies that are associated with the regions that are to be
computed with nonlocal interactions and/or explicit wave
function correlation methods.

■ A. DIVIDING A HAMILTONIAN INTO SEPARATE
CONTRIBUTIONS

Here we show a general expansion to divide a Hamiltonian
into fragment Hamiltonians. This could be of interest for
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computations within a fragment-based approach, and without
an embedding potential, i.e., using a global wave function for
the entire system, but with different interaction operators
(local and non-local) in the Hamiltonian, each used in a
different region. For these types of calculations, it may be
convenient to introduce some technique that decomposes
objects such as the electronic density, Hamiltonian, or an
energy functional, etc., into fragment contributions. This
decomposition could also be of assistance to determine van der
Waals forces between molecules that are not chemically
interacting.
In previous work we studied auxiliary Hamiltonian operators

that are partitioned into fragment-specific Hamiltonian
operators that mutually commute.44,45 The auxiliary operators
include a coupling term that induces transfer of energy and
charge between subsystems. This method, however, requires
determination of a “coupling” (or “embedding”) potential that
could be obtained from a density functional, which has to be
approximated.
An alternative approach could involve a direct partitioning of

the real Hamiltonian of the system. For example, let us assume
that the non-relativistic energy operator for the system of
interest can be expressed as

{ }∫

∫

ψ ψ ρ

ψ ρ ψ

̂ = ∇ ̂ ·∇ ̂ + ̂

+ ′ ̂ ′
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H vr r r r r

r r r
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r r
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d
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( ) ( ) ( ) ( )

1
2

d d ( )
( )

( )

3

3 3
(41)

As a starting point, let us decompose the differential volume
element (d3r) as follows:

∑ μ=r rd d ( )
X

X
3

(42)

where dμX(r) reads

μ = wr r rd ( ) d ( )X X
3

(43)

A molecular domain X is thus a region of space in which wX(r)
is non-negligible. This function can then facilitate the screening
of electrostatic repulsion integrals that involve the operator
ŴX, which are needed to solve the ground-state or time-
dependent problem of interest; neglecting insignificant
integrals in the atomic orbital basis can reduce the computa-
tional costs by a significant margin.
The partition shown above requires that the sum of

weighing functions equals the unity (∑XwX(r) = 1). Inserting
this expansion into eq 41 gives

∑̂ = ̂ + ̂
≠

H H WX
X Y

X Y,
(44)
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and

∫ μ μ ψ ρ ψ̂ = ′ ̂ ′
̂
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̂ ′†W r r r

r
r r

r
1
2

d ( ) d ( ) ( )
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( )X Y X Y, (46)

The operator ŴX,Y is symmetric with respect to domain label
exchange, ŴX,Y = ŴY,X. This operator represents the repulsion

between auxiliary electrons in different domains. For problems
involving the computation of weak forces, a DS-DFT
framework could be formulated in terms of a constrained
search based on the operator T̂ + ∑Y≠X ŴX,Y.

■ B. LOCAL POTENTIAL AND SCHRÖDINGER-LIKE
EQUATIONS

Let us consider the following Lagrange functional:

∫ ρ ρ

[Φ ] = ⟨Φ| ̂ + ̂ |Φ⟩

+ {⟨Φ| ̂ |Φ⟩ − } − [⟨Φ|Φ⟩ − ]

L v E T W

v Er r r r

, ( )

d ( ) ( ) ( ) 1

Xl

3
l

(47)

In the above equation, vl and E are the multipliers, and Φ ∈ .
If is the space of Slater determinants, taking variations with
respect to orbitals leads to the hybrid Hartree−Fock/Kohn−
Sham equations. If is the space of correlated wave functions,
then variations with respect to Φ give eq 21. It can be shown
that

δ
δρ

= −
G

v
r

r
( )

( )Xl,
l

(48)

this result is arbitrary by a constant. Similarly, δF/δρ(r) =
−v(r) at the ground state. Comparing this result with the
above equation we obtain

δ
δρ̅ = ̅

u
E

r
r

( )
( )Hxc

l Hxc
l

(49)

and vl(r) = u̅Hxc
l (r) + v(r) .
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■ ADDITIONAL NOTES
aIn the Supporting Information we show an alternative
decomposition of this functional.
bIf a different XC functional were used, like PBE, we would
refer to it as PBE-nLE.
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