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ABSTRACT: We recently proposed domain separated density functional
theory (DS-DFT), a framework that allows for the combination of different
levels of theory for the computation of the electronic structure of molecules.
This work discusses the application of DS-DFT to the computation of
transition-state energy barriers and optical absorption spectra. We
considered several hydrogen abstraction reactions and optical spectra of
molecule/metal cluster systems, including the absorption of individual
species such as carbon monoxide, methane, and molecular hydrogen to a Li6
cluster. We present and discuss two domain-separated methods: (i), the
screened-density approximation (SDA) and (ii) linearly weighted exchange
(LWE). We find that SDA, which is applied as a hybridization based on
atomic domains, could be useful to computing energy barriers, whereas LWE is suited for the analysis of electronic properties such as
ground-state gaps, excitation energies, and oscillator strengths.

1. INTRODUCTION

Density functional theory (DFT) methods are widely used in
electronic structure studies due to their reliability and
computational accessibility. The electronic energy is conven-
iently calculated by a set of density functionals that capture the
relevant physical contributions to it. The most popular type of
DFT method is that of hybrid functionals.1−3 They are
commonly used as they provide useful estimation to quantities
such as energy gaps, optical excitation energies, reaction
energetics, among others, so that they can provide guidance to
the understanding of molecular systems. For large molecular
architectures, however, the applicability of hybrid functional
methods can be quite challenging. This has been a strong
motivation to develop quantum embedding (QE) method-
ologies,4−6 designed to apply different levels of theory to
different parts of a molecule or collection of molecules
(dimers, bound systems, etc.), with the goal of achieving both
the control of computational cost and the accuracy of a
calculation.
Defining the level of theory sometimes requires the user to

decide how to treat the exchange and the correlation energies.
For example, in standard hybrid functionals, the exchange
energy is decomposed into a contribution from Hartree−Fock
(HF) exchange and another one from a purely density-
dependent (PDD) exchange functional (such as a generalized
gradient approximation, or GGA, exchange, for instance). In
other cases, such as multi-heavy-metal complexes,7 the
correlation effects need to be described by a wave function
based level of theory such as complete active space, or a related

technique. With QE methods, we can assign a region of
interest a hybrid functional (or wave function method), and a
more efficient methodology to complement such a region of
interest; it is assumed of course, that this region necessitates
the methodology of higher accuracy.
Domain separated DFT (DS-DFT) is a theory to perform

QE calculations as described above. In this theory, a domain
(or switching) function is used to separate quantum
mechanical operators into those that are to be study with a
wave function methodology, and those to be analyzed with
density functional theory. We showed, as an example, that HF
theory can be combined with DFT, giving physically meaning
results.8 In these calculations, however, the domain function
was not employed explicitly. In ref 9, we suggested that density
fitting techniques can be employed to simplify the computation
of the domain separated (DS) HF exchange contributions. In
this work, we apply this idea to the combination of hybrid
functionals with PDD ones.
PDD functionals are commonly employed in plane-wave

DFT codes to study extended structures such as nanotubes,
two-dimensional materials, and semiconducting crystals. On
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the other hand, hybrid functionals, which use a component of
wave function theory, namely HF exchange (and perturbative
correlation, as in the case of double hybrid functionals10),
often lead to calculation of optoelectronic properties of single
molecules, organic or inorganic.11 For large- or extended-
system computations, however, HF exchange (and orbital
dependent correlation) can be computationally demanding due
to the high number of electronic repulsion integrals that need
to be determined to construct the exchange matrix of the
system being studied. For this reason, it is important to
develop algorithms that combine theories. Figure 1 illustrates a
potential application in this direction.

In the field of QE, a series of productive theories and
methods have been proposed to address different chal-
lenges.12−24 Some of these methods involve the use of an
auxiliary operator or mechanism that localizes orbitals within a
region of interest, or the use of an embedding self-energy that
permits the mixing of different levels of theory. For molecule−
solvent interactions, among others, subsystem DFT and
frozen-density embedding are established methods to study
such types of situations.12,14 We recently proposed that the
idea of range separation in DFT,25−27 and the generalized
Kohn−Sham theory28 can be employed to combine different
levels of electronic structure theories, including description of
correlation by wave functions.8

In this work we utilize domain separation as a means to
further extend the applicability of hybrid functionals. Standard
hybrid functionals mix globally fixed amounts of HF exchange
and pure DFT exchange. This admixture is applied to the
entire space. With domain separation, one can instead control
this mixing locally, so a hybrid functional can be applied
specifically to a region of interest in the molecule. In addition,
we can also apply domain separation atom-wise, adding
possibilities for the creation of alternative hybrid functionals.
This can be useful to eliminate or reduce adverse effects such
as self-interaction errors which are present in regions of low
electronic density (near hydrogen atoms, for example). We
apply these ideas to the calculation of transition-state energy
barriers, and electronic spectra. Two DS XC approximations
are explored: the screened-density approximation, and the
linearly weighted exchange. These show promising results for
the calculation of energetic properties, and may motivate their
implementation for large-scale computational studies.

2. THEORY IMPLEMENTATION
In this section, we describe the steps we follow in the
implementation of DS-DFT and DS-TDDFT calculations. The
formal theoretical background is presented in ref 8, and
additional details are discussed in refs 9 and 29.

2.1. Ground State DS-DFT. To motivate the form of XC
energy used in this work, we consider the following basic type
of hybrid functional:

ρ γ γ ρ

ρ

[{ } { }] = [{ }] + − [{ }]

+ [{ }]
σ σ σ σ

σ

E aE a E

E

, (1 )xc
hyb

x
HF

x
DFA

c
DFA

(1)

Here Ex
DFA and Ec

DFA are PDD exchange and correlation
energies, respectively (these are determined through a density
functional approximation, or DFA), and Ex

HF is the HF
exchange energy; σ and τ label spin. γσ denotes the spin-
polarized 1-body density matrix:

∑γ φ φ′ = * ′σ σ σr r r r( , ) ( ) ( )
i

i i
(2)

Here φiσ denotes an occupied molecular orbital, with the
energy level i and z-spin σ. The spin electronic density is
simply ρσ(r) = γσ(r,r). To apply domain separation to this kind
of functional, we replace a by a switching function, or domain
function, denoted as ξ(r). This function, ξ(r), determines the
region where a portion of HF exchange is computed, in this
region ξ → a ; the function tends to zero otherwise (Figure
2). By employing the domain function we can combine a
hybrid functional with a pure DFA. In the next two
subsections, 2.2 and 2.3, we show different forms of this
function that we use.

The above leads to a domain separated XC energy, which in
the spin-polarized form reads

∑ρ γ γ ρ

ρ

[{ } { }] = − [{ }] + ̅ [{ }]

+ [{ }]

τ τ
σ

σ ξ σ ξ τ

τ

E K E
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(3)

where Kσ,ξ is the polarized domain-screened HF exchange
energy:

∫γ ξ ξ
γ

[{ }] = ′ ′
| ′ |

| − ′|σ ξ σ
σK r r r r

r r

r r
d d ( ) ( )

( , )
,

3 3
2

(4)

Figure 1. Example of a potential embedding DS-DFT model. For the
oxidation of an organic alcohol chemisorbed on the surface of a Au
nanoparticle, one could select what molecules could be studied with a
hybrid functional and treat the environment with a more computa-
tional efficient theory.

Figure 2. Illustration of domain separation applied to benzyl alcohol
adsorbed on a Au surface. In the molecular region ξ → a ,
everywhere else ξ → 0. We use a because the domain function
appears twice in the definition of Kξ,σ. If a functional such as PBE
(Perdew−Burke−Ernzerhof) were employed for the PDD part, and a
= 1/4, then with eq 3, we would obtain a spatial combination of PBE0
and PBE.
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E̅x,ξ
DFA is the complementary exchange energy to −(1/2)∑σKσ,ξ.

In regions where ξ → 0, the standard local exchange energy-
density contributes E̅x,ξ

DFA; otherwise, it is partially reduced
because of the nonlocal exchange contribution. Determining
how to treat the local exchange in the hybrid functional region
is the subject of the next two subsections, 2.2 and 2.3.
In analogy with standard HF algorithms, the computation of

the domain-screened HF exchange energy can be carried out
through an exchange matrix:

∫ ξ ξ ϕ
γ

ϕ= ′ ′
′

| − ′|
′σ ξ μν μ

σ
νK r r r r r

r r

r r
rd d ( ) ( ) ( )

( , )
( ), ,

3 3
(5)

where ϕμ denotes a basis function. As suggested in ref 9, the
above matrix can be computed by means of “orbital” fitting.
First, we define the orbital:

∑
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=
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( ).

i i

i

,

,
(6)

By applying the least-squares method to minimize the
difference between ξ(r)φiσ(r) and ∑μCξ,μ

iσ ϕμ(r), we obtain

Ξ=ξ
σ σ−C S Ci i1

(7)

where Ξμν = ∫ d3r ϕμ(r)ξ(r)ϕν(r), and C denotes the
molecular vectors of the standard molecular orbitals φiσ(r) =
∑μCμ

iσϕμ. This matrix can be determined using the standard
integration grid used in DFT algorithms. With these fitting
techniques, the auxiliary density matrix Dσ,μν

ξ = ∑iCξ,μ
iσ Cξ,ν

iσ can
be employed along with regular electron repulsion integrals.9

2.2. Screened Density Approximation. In our previous
work, for HF theory/DFA embedding, we employed the
approximation to the PDD exchange (E̅x,ξ

DFA):

ρ ρ ρ̅ [{ }] = [{ }] − [{ }]ξ τ τ ξ τE E Ex,
sda

x
DFA

x
DFA

, (8)

where

ρ ξ ρ=ξ τ τr r r( ) ( ) ( ),
2

(9)

In this work, we refer to the above functional as the
“screened-density approximation” (SDA). It consists in the
calculations and comparison of the standard exchange energy
evaluated at the net and screened spin-density ξ2(r)ρσ(r). In
ref 8, for HF/LDA embedding, we noted this led to physically
meaningful results for the calculation of band gaps and
hydrogen dissociation reactions of the methane and ethylene
molecules. Here we extend this idea to combine hybrids with
PDD XC functionals. Although the SDA can be applied to a
single molecular region of the system, here we apply the SDA
to assign different atoms in a molecule different amounts of HF
exchange. This allows for reducing locally (and as desired) the
adverse, electronic self-interaction.
Ideally, a domain function should approximately be a

constant in the embedded region, and smoothly tend to zero as
the distance from this region is increased. The smooth
transition between the plateau and zero facilitates the fitting of
orbitals to compute the domain HF exchange. Motivated by
this and for simplicity, we thus apply and explore a series of
quartic Gaussian functions to define the domain function (at
the end of section 4 we mention other possibilities for these
functions):

∑ξ
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ÅÅÅÅÅÅÅÅÅÅÅÅ

i
k
jjjjj

y
{
zzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
ar

r R
( ) exp

1
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4

(10)

where the sum runs over the atoms of the system. The aN
parameter denotes the amount of hybridization used for atom
N, and σN defines the radius where the quartic Gaussians
transition from the unity to zero. The SDA is examined for the
calculation of energy barriers in section 4. We name a
functional based on this procedure as SDA-DFA, where DFA =
LDA, PBE, etc. The Results and Discussion examine the
application of SDA-PBE.

2.3. Linearly Weighted Exchange. The approximation
we discussed in the previous subsection does not balance the
HF and PDD exchange, i.e., the sum of exchange contributions
in the uniform electron gas limit do not add up to 100% Dirac
exchange (we further discuss this point in section 4). If it is
required to maintain a balance of exchange contributions, we
can use the following approximation to the complementary
exchange:29

∫ρ ξ̅ [{ }] = [ − ] { }τ τ
ρ=τ τ

E e yr rd 1 ( ) ( )
y r

x
lw 3 2

x
DFA

( ) (11)

Here ex
DFA is the standard, approximated, local exchange energy

density. We thus treat the square of ξ as a local weight, and we
refer to this approximation as “linearly weighted exchange”
(LWE). With this formula, in the limit where the domain
function tends to a constant, the sums of the HF and PDD
exchange add to 100%. The exchange is thus linearly balanced
with respect to ξ.2 We will study this approximation as applied
to the computation of excitation energies.
For the calculations based on the LWE functional, we use a

single quartic Gaussian:

ξ = −
−
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4

(12)

where RC is a vector indicating the center of this domain
function, and Remb a radius. For distances longer than Remb, the
domain function decays. Figure S4 shows a plot of this
function for a = 1/4 and Remb = 1.0.

2.4. Linear Response DS-TDDFT. The linear response
equations are relatively straightforward to obtain. For example,
one could follow similar steps as in ref.,30 the only modification
is the screening of the Coulomb interaction potential required
to define the exchange potential: instead of using 1/|r − r′| we
use ξ(r)ξ(r′)/|r − r′|. In the Tamm−Dancoff approximation
(TDA), this leads us to the domain separated Casida
equation:31

= ΩAX X (13)

where X is an excitation vector, the A matrix is given by

δ δ δ σ τ

σ τ δ

= ϵ − ϵ + | ̅ |

− |

σ τ σ σ στ στ
ξ

ξ στ

A ai f jb

ab ji

( ) ( )

( )

ai bj a i ab ij, Hxc,

(14)

and ϵpσ is the eigenvalue energy of level pσ. The letters a, b
denote virtual orbitals, and i, j, occupied ones. The interaction
integrals are defined as follows:
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The Hartree-XC kernel is defined by the equation
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where E̅xc
lw=E̅x,ξ

DFA+Ec
DFA. Using the LWE approximation, the

(partial) XC kernel reads
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DFA
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where f x,στ
DFA and fc,στ

DFA are standard (adiabatic) PDD exchange
and correlation kernels, correspondingly. The oscillator
strengths are calculated as usual by means of the transition
dipoles.

3. COMPUTATIONAL METHODOLOGY

To generate reaction paths, we employed the program
SIESTA32,33 and its Lua extension. These paths are determined
by the nudged elastic band (NEB) method. The PBE34 XC
functional is used, with the autogenerated numerical Gaussian
basis set DZP. An SCF threshold of 1 × 10−7 eV was
employed, and 0.03 eV/Å as convergence criterion for the
NEB forces. Our calculations use the Python suite PyQuante.35

We use its algorithms to develop the domain-separated scripts
employed to perform the calculations shown in this work. The
SDA computations are based on the 6-31G** basis set and
applied to the energy barrier calculations. For each barrier
calculation, we use the reaction path generated by the SIESTA
Lua script. The CCSD(T)36 calculations were performed with
the NWChem37 program as a reference for the energy barrier
estimations, based on the same SIESTA reaction path and
basis set (6-31G**, refs 38 and 39). For the LWE DS-TDDFT
calculation we also used the mentioned Python code. The basis
set for this case is 3-21G (chosen for computational
convenience).40 The XC functional is the local density
approximation (LDA). For comparison, we also computed
the excitation spectra using configuration interaction singles
with doubles perturbative correction, CIS(D),41 implemented
in the program ORCA,42,43 and same basis set.

4. RESULTS AND DISCUSSION

4.1. Reaction Barriers. Now we consider the computation
of the energies of the reactions paths generated with the NEB
method. We use five intermediate images for the reactions
shown below (more images did not change the barrier
significantly):

+ → +

+ → +

+ → +

+ → +

CH H CH H

H O H HO H

H H H H

SiH H SiH H

3 2 4

2 2

2 2

3 2 4 (19)

For these reactions, we apply the atom-wise SDA. We assign
a domain function to each atom. For hydrogen aH = 1.0 and
for the other atoms aOther = 0.5. For each atom σN is chosen as
its atomic radius (C: 0.7 Å, H: 0.25 Å, O: 0.6 Å, Si: 1.1 Å).
Figure 3 shows this embedding scheme for the H2O + H

reaction. Our rationale for choosing aH = 1.0 for hydrogen is
that this reduces the self-interaction error, which is
pronounced in regions of low electron-density, such as the
hydrogen atoms. We use a = 0.5 for C, Si, and O, because it is
known that higher amounts of HF exchange around this value
are useful to improve transition-state barrier energetics.44

Figure 4a shows the results of the first reaction in the series
above. A comparison with the functionals PBE34 and PBE02,3

is also displayed in this figure. The PBE functional produces a
low barrier, while PBE0 predicts a slightly higher one. The
SDA-PBE XC functional improves upon both functionals and
yields a barrier closer to that predicted by CCSD(T). The
change in energy between products and reagents is also
approximately described by SDA-PBE.
For the second reaction, Figure 4b, we also observe that the

SDA-PBE curve shows proximity to the reference calculation
(and it also shows good agreement for the first NEB step of the
calculation, Figure S1). In the other two cases (Figure 4, parts
c and d), however, we see mixed results. For SiH3 + H2, while
the height with respect to reagents is well described, it is
underestimated for the reverse reaction (due to the over-
estimation of the product electronic energy). For the third case
(H2 + H), nonetheless, neither PBE0 nor SDA-PBE estimates
the reaction barrier properly. However, the domain separation
scheme does improve the results with respect to PBE. One
potential cause for this behavior is the lack of proper gradient
corrections to the density-dependent exchange energy. These
corrections should account for the types of atoms involved in
the chemical reaction.
Although in the SDA XC functional the HF and PDD

exchange contributions do not exactly add up to 100%, we
note, however, that the SDA performs in a promising way. The
requirement that two functionals add to 100% exchange is
needed, for example, in the limit where all the electrons are
completely delocalized, as in the uniform electron gas. In
molecular systems, this situation is not generally applicable. In
such regimes, one could theorize that the form of the exact
PDD exchange functional is different from the approximations

Figure 3. Hybridization based on atomic domains.
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we often use. Therefore, that the HF and approximated PDD
exchanges add to 100% is a condition that can be relaxed. At
the end of the Results and Discussion, we suggest ways to
improve the SDA and LWE functional approximations.
The above energy barrier calculations are suggestive of

alternative avenues for the estimation of energy properties of
molecules. Something we can note is that these calculation
only necessitate the domain-screened exchange energy and its
purely PDD counterpart; additional energy corrections terms
(that are added to the total energy expression) are not
required. Furthermore, because the domain functions only
modify the Coulombic interaction, in principle, a complete
basis set limit can be achieved.
4.2. Excitation Spectra. Now we focus on calculating

optical spectra of molecules adsorbed on an octahedral Li6
cluster. This type of system was studied by Pandey and
Schatz45 in the context of enhanced Raman spectroscopy. The
adsorbed molecules are carbon monoxide, methane, and
molecular hydrogen. We discuss here mainly the results for

CO, the remaining are reported in the Supporting Information
(Figures S5−S10). In this case we locate the domain function
ξ around the geometrical center of the molecule, as depicted in
Figure 5. The embedding radius is varied from 0 to about 13 Å,

Figure 4. Energy barriers predicted by the SDA, basis set used in all cases is 6-31G**. Matching of colors shown in part c: green, PBE; purple,
PBE0; blue, SDA-PBE; cross symbols, CCSD(T). The electronic energy (plus nuclear repulsion) is shown with reference to the reagent
configuration (rotational and vibrational contributions are neglected).

Figure 5. Embedding model for the system CO + Li6, and molecular
orbitals involved in the CT state.
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and we set a = 1/4 in eq 11. For the sake of simplicity, we apply
the LWE, by mixing the XC functionals LDA046 and LDA.47,48

The LDA0 is an XC functional that combines 25% HF
exchange with 75% LDA exchange, and 100% LDA correlation.
As we reported in ref 46, this functional achieves similar results
as PBE0 or B3LYP.49,50 This is due to the admixing of
exchange contribution dominating significantly over the
gradient corrections. This trend does not apply to ground-
state total energies.46

As is well-known, the LDA functional underestimates
charge-transfer (CT) excitation energies. This is caused by
overdelocalization of the molecular orbitals and overrelaxation
of the orbital energies. For the cluster, as electrons are
correctly delocalized, a functional such as LDA0 is not
required. Therefore, by treating the molecular region with
LDA0, and the cluster with LDA, this could lead to
improvements in the estimation of CT energies.51 However,
with domain separation, the possibilities for combining
different types of XC functionals in general can go beyond
LDA0/LDA embedding, as implied before.
In Figure 6 we show the changes in absorption spectrum for

different values of Remb, and in the range 6−9 eV. We note that

increasing Remb blue-shifts the CT peak (indicated by arrows)
more than the other peaks. As the Remb is increased the CT
peak converges toward the peak predicted by CIS(D) (the
peak pointed by the arrow in purple color, top subplot in
Figure 6), shifting by about 1 eV (this is also observed for CH4
+ Li6 and H2 + Li6, Figures S8 and S13). The full dependency
of the CT excitation energy as a function of Remb is displayed in
Figure 7. With an embedding radius of about 1.3 Å, 99% of the
CT energy predicted by LDA0 is obtained. The importance of
the inclusion of larger Remb values cannot be overstated, as
both excitonic and spin injection have a semidelocalized nature
within the basal plane of 2D-functionalized materials.52

The CIS(D) calculation also shows a peak at near 6 eV
which shows agreement with the LWE calculations, this peak
has a strong interband character. However, the LDA0/LDA
(or LDA0) bands between this and the CT peak are red-
shifted with respect to the CIS(D) results (these have Li s-to-p

interband character). This is due to differences in high-energy
virtual orbitals with strong lithium p-orbital contributions. In
all the cases we studied (Figures 6, 8, S7, S9, S12, and S14) the

peak heights and positioning may show a nonmonotonic
behavior with respect to Remb. However, the peaks become
monotonic after Remb is large enough. We attribute the
nonmonotonic behavior to fundamental differences between
the LDA0 and the LDA XC functionals. Some peaks may not
only shift, there can be splitting and changes in their heights.
However, all the computed spectra converge from LDA to
LDA0 as Remb is increased.
For transitions at lower energies (Figure 8), starting with the

pure LDA results, we find the first intense peak (∼2.8 eV) is
dominated by s-to-s transitions, so it has a plasmonic character
(see also Figure S9 and S14). The second peak around 3.7 eV
features “interband” s-to-p character. These peaks show a weak
contribution from the CO molecular orbitals, which we believe
are responsible for the slight changes in the peak positioning as
a function of Remb. However, the peak computed with LDA at
around 2.3 eV blue-shifts as Remb is increased. In the top
subplot this peak is located near 3 eV (first peak after the
plasmonic excitation). This blue-shifting is caused by a strong
mixing with CO molecular orbitals. The energies of the CO
orbitals are raised because of the inclusion of HF exchange. For
the other molecule-cluster systems studied in this work
(Supporting Information), we noted that the plasmonic peak
does not shift significantly as other transitions (the CT peak

Figure 6. Electronic spectrum (in terms of oscillator strength
magnitude (y-axis), which is dimensionless) of CO + Li6 for different
values of Remb. Comparison with CIS(D) is shown in the top subplot.
Charge-transfer peak is indicated with an arrow. As Remb is increased,
the spectrum converges to the LDA0 one.

Figure 7. CT excitation energy as a function of Remb. For embedding
radii larger than 1.5 Å we note the CT excitation energy converges to
the supramolecular LDA0 value.

Figure 8. Same as Figure 6, but in range 0−6 eV. The plasmonic peak
is indicated with an arrow. Again, as Remb is increased, the spectrum
converges to the LDA0 one.
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for instance). This is due to the delocalized character of the
orbitals involved in this excitations. It is intuitive that a hybrid
or a pure DFA should yield similar results in regions where
electronic delocalization is dominant.
The other method we discussed in this work, SDA, can be

used in analogous way as we used the LWE to perform the
optical calculations (as in Figure 5, with no atom-dependent
exchange). We expect this application would blueshift the
spectra slightly more than LWE. However, using SDA would
not be the same as LWE LDA0/LDA, but the hybrid
contribution in the embedding region would be similar to
the LDA0.
4.3. Extended Functionals. Based on the results

presented here for the SDA, it is possible that this functional
can improve reaction barriers because of the way the exchange
energy is treated. Therefore, a potential domain-separated XC
functional of interest for future exploration consists in applying
different domain functionals to different exchange energy
components. For example,

= − + +ξ θE K E E( )xc
ds

,x c (20)

where θ is a different domain function. With a comprehensive
set of reference data, one could perform training (either via
nonlinear regression or machine learning) to determine
suitable domain functions ξ and θ that yield accurate results.
An SDA functional developed in this way can also be
combined with traditional functionals, so a region of the
system is treated with SDA, whereas the “environment” with a
GGA, or something related. Another potential area for future
development is the derivation of pure DFAs to be used in
conjunction with domain-screened exchange. This could lead
to improved estimation of energetics and other properties. The
principles employed in DS-DFT provide pathways for DFA
development.
The LWE method can be applied in an atom-wise fashion as

we used the SDA to calculate reaction energy barriers. We
noted in preliminary calculations the reaction barriers were not
significantly improved. This suggests that modifications to the
PDD exchange contributions may be needed (for example, by
changing the gradient corrections) to improve such energy
barriers.
Finally, in this work we utilized quartic Gaussians to define

the domain functions. This function is convenient because it
features a plateau and a smooth transition to zero. There is
flexibility in exploring alternative domain functions. The
embedding radius, for example, can be replaced by a
position-dependent analogue to Remb that is determined by
the closest atom. If a domain function is selected, the PDD XC
contributions may require adjustments so the net DS XC
functional so obtained is accurate and fulfills the intended
purpose of the electronic structure calculation.

5. CONCLUSION
We examined the application of domain separation to the
calculation of excitation energies, oscillator strengths, and
reaction-path energetics. The results show promise for the
development of computational and theoretical methods based
on DS-DFT. For the calculation of transition-state energy
barriers, the SDA is an approximation that could be further
developed to enable comprehensive prediction of these
barriers. The LWE method can be of interest to compute
optical spectra, where there is a specific spatial region that

should be studied with a hybrid functional. We found that by
combining a hybrid with a purely density-dependent functional
the charge-transfer excitation can be blue-shifted, which is an
important theoretical feature to be understood for the correct
modeling of quantum dots, quantum transduction, the charge
transport of transistors, bulk heterojunctions, and more.
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