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ABSTRACT
Community efforts in the computational molecular sciences (CMS) are evolving toward modular, open, and interoperable interfaces that work
with existing community codes to provide more functionality and composability than could be achieved with a single program. The Quantum
Chemistry Common Driver and Databases (QCDB) project provides such capability through an application programming interface (API) that
facilitates interoperability across multiple quantum chemistry software packages. In tandem with the Molecular Sciences Software Institute
and their Quantum Chemistry Archive ecosystem, the unique functionalities of several CMS programs are integrated, including CFOUR,
GAMESS, NWCHEM, OPENMM, PSI4, QCORE, TERACHEM, and TURBOMOLE, to provide common computational functions, i.e., energy,
gradient, and Hessian computations as well as molecular properties such as atomic charges and vibrational frequency analysis. Both standard
users and power users benefit from adopting these APIs as they lower the language barrier of input styles and enable a standard layout of
variables and data. These designs allow end-to-end interoperable programming of complex computations and provide best practices options
by default.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0059356

I. INTRODUCTION

The number of quantum chemistry (QC) programs is continu-
ously increasing, building a rich spectrum of capabilities where var-
ied levels of accuracy, performance, distributed computing, graphics
processing units (GPU)-acceleration, or licensing can be obtained.
While this is generally beneficial to the end user, the diversity of cus-
tom input and output makes it difficult to switch between programs
without learning the vagaries of each. Even the simplest research
tasks using QC programs require mastering layers of expertise. On
the input side, users must know what model chemistry will treat
the molecular system of interest with adequate physics in tractable

time, as well as pertinent modifications like density-fitting (DF),
convergence, and active space, which are all questions of scientific
expertise (I-a). [Labels of non-scientific (i.e., beyond I-a) input I-x or
output O-x problems enumerated here are referenced by solutions in
Sec. II.] They must know the names given by a QC program to the
knobs that dial up the model chemistry and modifications, a ques-
tion of domain-specific-language (DSL) expertise (here, “domain” is
the QC software) (I-b). They would benefit from knowing the insider
best-practice knobs that select the most efficient algorithms, approx-
imations, and implementations specialized to the model chemistry,
a question of program expertise (I-c). They must know the struc-
ture of the input specification by which the QC program receives
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instruction, a question of formatting and DSL expertise (I-d). Last
on the input side, they must know the dance of files, environment
variables, and commands to launch the job, a question of program
operational expertise (I-e).

On the output and analysis side, further skills are required to
process the program-specific ASCII or structured data file. Users
must know what strings in the output mark the desired result, a mat-
ter of DSL expertise (O-a). If the targeted quantity is not explicitly
printed but is derivable, they must know the arithmetic or unit con-
version, a question of QC expertise (O-b). If individual energies or
derivatives are to be combined to create a more sophisticated model
chemistry (e.g., basis set extrapolation,1,2 focal-point methods,3–5 G3
or HEAT procedures,6,7 or empirical correction8) or for molecular
systems decomposition or perturbation [e.g., many-body expansion
(MBE), counterpoise procedure,9 geometry optimization, or finite
difference derivatives], users may be able to use routines built into
QC programs (needing DSL expertise) but more generally must
script the procedure themselves, requiring QC and programming
expertise (O-c). More elaborately, they may want to combine the
results with other programs—requiring recognizing and compensat-
ing for default knobs that render program results unmixable—a mat-
ter of QC and program expertise (I-f). Finally, users may hope that
completed calculations can be stored and queried or even reused,
matters of database expertise (O-d). Efforts to reduce non-scientific
expertise burdens on the user have traditionally aggregated QC
methods, geometry optimizers, and sundry procedures into verti-
cally integrated “software silos” that, by increasing the DSL burden,
risk locking users into one or a few programs. We pursue reduc-
ing the non-scientific expertise burdens on users by restructuring
the QC software ecosystem while minimally disrupting longstand-
ing, robust, and debugged computational molecular sciences (CMS)
codes.

As a concrete example, in a high-accuracy spectroscopic appli-
cation (see Sec. III), a user might want to include numerous small
corrections, such as electron correlation effects beyond coupled-
cluster (CC) through perturbative triples [CCSD(T)],10 basis set
extrapolation, relativistic corrections,11 and Born–Oppenheimer
(BO) diagonal corrections.12,13 The best implementation of each of
these terms is not necessarily found in a single QC program. Careful
users can evaluate different terms using different programs through
a post-processing script to obtain a focal-point energy, but more
complex procedures such as geometry optimizations14 are difficult
due to tight coupling in QC programs that generally do not allow
arbitrary gradients to be injected into the iterative optimizer.

Finally, in the emerging “data age” of computational chem-
istry, users increasingly want to treat QC results as a commodity,
obtaining them on demand as part of complex workflows or gener-
ating datasets of millions of computations to use in force field (FF)
parameterization, methodology assessment, machine learning (ML),
or other data-driven pipelines. These users must be able to set up,
execute, and extract computational results as easily as possible.

To address such challenges, the differing needs of work-
flows for uniform interaction with CMS codes have been sepa-
rated into different layers of concern, resulting in the develop-
ment of QCENGINE and Quantum Chemistry Common Driver and
Databases (QCDB).15

● Consider a new QC practitioner learning which density
functional theory (DFT) program best suits the local hard-
ware or accessing the latest ML FF for many molecules.

Such users would benefit from a uniform application pro-
gramming interface (API) to evaluate these diverse capa-
bilities without requiring knowledge of the specifics of
each program’s DSL. QCENGINE is designed to provide
this uniform API and is an I/O runner around individ-
ual CMS codes’ core single-point capabilities. QCENGINE
communicates through a JavaScript Object Notation (JSON)
Schema,16 denoted QCSCHEMA, thus automatically gen-
erating program input files from a consistent and simple
molecule and method specification.

● Next, consider the systematic study of dipole moments at
different levels of theory from different programs or a FF
developer training on the many symmetry-adapted pertur-
bation theory (SAPT) component results over thousands
of molecules. These applications would benefit from out-
put layout uniformity and programmatic access to detailed
results. QCENGINE covers these cases by harvesting binary,
structured, or text output into standardized QCSCHEMA
fields.

● Next, consider the maintainers of a CMS code whose users
have been making the same formatting and incomplete
input mistakes for the past decade and have been peti-
tioning for quality-of-life features that would incur poor
complexity-to-benefit ratio if implemented within the native
framework and languages. These barriers to research would
benefit from a shim layer in an easy and expressive lan-
guage. QCDB provides a flexible input framework, helpful
keyword validation, access to multijob procedures like MBE,
and a place (besides documentation) to inject advice like
context-dependent defaults.

● Now, consider a spectroscopist modeling a molecule with
a composite method or the QC beginner hoping to avoid
learning multiple DSLs. These circumstances would bene-
fit from uniformity of input and results across programs.
QCDB compensates for variable defaults and conventions so
that multi-program model chemistries can be safely defined
and simple methods accessed interchangeably.

● Finally, consider the experienced QC practitioner who
writes inputs from memory and who turns keyword knobs
as nimbly as organ stops but who would like to try another
optimizer or an MBE procedure or not worry about capital-
ization and spaces today. This situation would benefit from
a light hand in developing the QCSCHEMA translation and
common driver API so that existing expertise in direct inter-
action with CMS codes (DSL for keywords, for example) is
applicable to these current projects.

In enabling uniformity at the input, output, and cross-program
layers, both QCENGINE and QCDB have striven to make their input
predictable from customary input and to make customary output
available.

Central to the ability of QCARCHIVE17 and QCDB to pro-
vide generic I/O, driver, and database interfaces to CMS codes is
a common standard QC data format. Of course, to develop such a
standard information exchange format for all QC programs and to
encourage its adoption by QC packages is a difficult approach for a
single research group, or even a handful of research groups, to suc-
cessfully prescribe to a broad developer community. However, here
the Molecular Sciences Software Institute (MolSSI),18 funded by the
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U. S. National Science Foundation, provides a unique opportunity
to sponsor community discussions and to advocate for standards.
Members of our collaborative team and the codes represented have
worked closely with MolSSI on their development of a QCSCHEMA19

for quantum chemistry information exchange, and we have adopted
it for QCENGINE and QCDB.

There have been previous efforts to provide a unified inter-
face to set up, drive, and analyze QC computations. For example,
NEWTON-X20 and FMS9021–23 perform nonadiabatic dynamics
computations using any of several QC programs. The Quantum
Thermochemistry Calculator (QTC)24 interfaces to a handful of QC
programs to provide unified thermochemistry analysis functions
independent of the QC data source. Especially tailored to deal with
excited state optimizations is PYSISYPHUS, an external optimizer
that localizes stationary points on potential energy surfaces
by means of intrinsic reaction coordinate (IRC) integration, chain-
of-state optimization, and surface walking for several QC codes
through a uniform interface.25 Among more general-purpose
programs, CUBY26,27 is a uniform driver and workflow manager that
works with multiple QC and force field tools. CUBY allows the com-
bination of methods across its interfaced programs and provides
mixed quantum mechanics/molecular mechanics (QM/MM) and
molecular dynamics capabilities. The WEBMO project is another
that drives several QC programs as backends from a largely unified
web portal frontend.28 Another popular tool is the Atomic Sim-
ulation Environment (ASE),29 which provides a Python interface
to more than 40 QC or force field codes, along with drivers for
geometry optimization and transition state searching with the
nudged elastic band method and analysis and visualization func-
tions. A recipes collection (ASR)30 supplies further spectroscopy
and analysis tools. ASE and ASR are focused on solid-state
computations; while molecular computations are also possible, they
do not provide the level of detail required for the majority of
quantum chemistry workflows. Compared to ASE, QCDB is more
focused on high-accuracy quantum chemistry (providing, for exam-
ple, built-in support for focal-point methods). Newer entrants to
the field of computational chemistry workflow tools at the scope
of QCARCHIVE (rather than the narrower modular components
QCENGINE and QCDB discussed here) include AIIDA,31,32 which
at present is materials focused, and CHEMSHELL,33 which focuses
on multiscale simulations. By interfacing with QCARCHIVE, QCDB
can also focus on high-throughput quantum chemistry and on
creating large databases for force field parameterization and
machine-learning purposes. Although not focused on running CMS
codes, the CCLIB34,35 and HORTON36 projects also have extensive
capabilities to regularize output and post-processing.

We describe the modular software built to facilitate interop-
erability, the community QC codes, and the technical challenges
associated with an interoperability project in Sec. II. An example
application demonstrating the use of multiple QC codes to perform
very high accuracy computations of spectroscopic constants of some
diatomic molecules is presented in Sec. III.

II. FEATURES AND DESIGN PHILOSOPHY
Discussed are the present software projects and their place in

the CMS ecosystem in Sec. II A, interfaced software providing single-
point energies and properties in Sec. II B, interfaced and built-in

software providing more complex procedures in Sec. II C, how these
are all linked by a common driver in Sec. II D, and further details
about implementing interoperability in Sec. II E.

A. QCSCHEMA and the quantum chemistry
software ecosystem

The modular software components in our layered approach
to QC interoperability and high-throughput computing are shown
in Fig. 1. All are open-source projects, and community feedback
and contributions through GitHub are welcome (links at Sec. V;
QCENGINE documentation includes the general process for adding
a new QC program). The QCSCHEMA19 definitions layer is foun-
dational and encodes the community-developed data layouts and
model descriptions useable in any language, from C++ to Rust
to JavaScript to Fortran. Above that is the QCELEMENTAL37 data
and models layer that implements QCSCHEMA and imposes a
Python language restriction to gain sophisticated validation and
feature-rich models. Next is the QCENGINE38 execution layer that
adapts CMS codes for standardized QCSCHEMA communication
and imposes an execution environment restriction to gain easy
access to many programs. Last is the QCFRACTAL39 batch execution
and database layer that imposes some calculation flexibility restric-
tions to gain multi-site distributed compute orchestration and
provide structured-data storage and querying capabilities. [This
layer, beyond the scope of the present work, addresses (O-d).]
Together these compose the QCARCHIVE INFRASTRUCTURE,
the Python software stack that backs the MolSSI QCARCHIVE
project.17,40 Enhancing QCENGINE is the QCDB41 interoperability
layer that imposes feature-registration and cross-program defaults
restrictions to gain input uniformity and multi-program workflows.

QCELEMENTAL37 (see Fig. 1) provides data and utilities (like a
QCSCHEMA implementation) useable by all QC packages. For data,
it exposes NIST Periodic Table and CODATA physical constants
through a lightweight API and provides internally consistent unit
conversion aided by the external module PINT.42 QCELEMENTAL
supports multiple dataset versions for CODATA and for prop-
erties such as covalent and van der Waals radii. Additionally,
QCELEMENTAL provides a Python reference implementation for the
MolSSI QCSCHEMA data layouts, including Molecule (example is
given in Snippet 2), job input specification AtomicInput [exam-
ples at Figs. 2(b)–2(d)], and job output record AtomicResult. In
addition to enforcing the basic key/value data layout inherent to
a schema, QCELEMENTAL uses the external module PYDANTIC43

to collocate physics validation, serialization routines, extra helper
functions (like Molecule parsing, alignment, and output format-
ting), and schema generation into a model for the QCSCHEMA.
Historically, many QCELEMENTAL capabilities were developed for
QCDB in PSI4 and then refactored into QCELEMENTAL for broader
community accessibility free from PSI4 and compiled-language
dependence. QCENGINE and QCDB use all the QCELEMENTAL
capabilities mentioned, particularly for QCSCHEMA communi-
cation and for uniform treatment of fragmented, ghosted, and
mixed-basis molecules across differing QC program features.

QCENGINE38 provides a uniform execution interface whereby
community CMS codes consume QCSCHEMA AtomicInputs and
emit AtomicResults via adaptors, called ProgramHarnesses.
Depending on the degree of programmatic access a QC package
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FIG. 1. Modular ecosystem around QCENGINE and QCDB. QCENGINE is the central, QCSCHEMA-based QC program runner in the QCARCHIVE INFRASTRUCTURE software
stack, while QCDB adds additional interoperability features atop it. User input routes to QC computations are shown as one or more turquoise boxes—“TXT” for a command-
line interface, “PyAPI” for an interactive application programming interface in Python, or “JSON” for single-command QCSCHEMA communication through command-line or
Python.

provides, the ProgramHarness may be simple, as for a pack-
age that already provides a QCSCHEMA interface; moderate, as
for a package that supports a Python API or has serialized out-
put, be it binary, Extensible Markup Language (XML), or JSON;
or involved, as for an executable with ASCII I/O; further details
may be found in Sec. II E 10. A typical ProgramHarness con-
sists of taking an AtomicInput, translating it into input file(s)
and execution conditions, executing it, collecting all useful out-
put, parsing the results into an AtomicResult, and returning
it to the user. A ProgramHarness is written to cover analytic
single-point computations, namely, energies, gradients, Hessians,
and properties, as discussed further in Sec. II B. Adaptors for more
complicated actions are classified as ProcedureHarnesses and are
discussed in Sec. II C. QCENGINE additionally collects runtime data
such as elapsed time, the hardware architecture of the host machine,
memory consumption of the job, software environment details, and
execution provenance (e.g., program, version, and module). As sug-
gested by Fig. 1, adaptors written in QCDB have been migrated to
QCENGINE so that both projects access more QC codes and share
the maintenance and development burden.

QCDB41 supplements QCENGINE’s program and procedure
capabilities with interoperability-enhanced ProgramHarnesses and
multi-program procedures; furthermore, it links QCENGINE calls
into an interactive driver interface. From the user’s viewpoint, this
layered approach to uniform QC computation is shown in Fig. 2

by an open-shell CCSD single-point energy. Running a QC code
directly, as in Fig. 2(a), requires considerable DSL knowledge for
method, basis, and keywords, not to mention details of layout and
execution; essentially only the geometry (black text) is uniform. By
molding the text inputs of Fig. 2(a) into the QCSCHEMA data lay-
out Fig. 2(b), QCENGINE unifies the gray-shaded fields but still
requires DSL from multiple codes. QCDB imposes more depen-
dencies, like its own basis set library and utilities, to allow uni-
form basis specification and molecule symmetry as in Fig. 2(c). By
imposing keyword registration and precedence logic, QCDB can
provide the uniform and single-DSL input of Fig. 2(d). In prac-
tice, QCDB harnesses are minimal wrappers around QCENGINE
harnesses.

By choosing an entry point (software component in Fig. 1)
and interface (CLI, Python API, JSON), external projects can sat-
isfy a number of interoperability use cases: convention for data
layout (stop after QCSCHEMA), molecule string parsing (stop after
QCELEMENTAL), uniform CMS execution (stop after QCENGINE),
tolerant Python interface to single venerable CMS code (QCDB), or
multicode workflows (QCDB).

B. Program capabilities
For several community codes or programs [Fig. 3(i); not

comprehensive] capable of computing analytic energies, gradients,
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FIG. 2. Degrees of unifying access to quantum chemical calculations illustrated through an open-shell CCSD energy computation. Black text and gray shading are aspects
not requiring user knowledge of multiple DSLs. See penultimate paragraph of Sec. II A for discussion.

or Hessians, the authors have written QCSCHEMA adaptors
for QCENGINE known as ProgramHarnesses [Fig. 3(ii)]. The
primary returns can be full scalars or arrays, as for most QC
methods, or partial, as for dispersion corrections. So long as
program communication fits into the AtomicResult data layout,

semi-empirical and molecular mechanics programs can also
formulate QCENGINE adaptors. A summary of interfaced codes can
be seen in Table I. QCDB asserts greater control over codes to
assure consistent output values, so its capabilities are centered on
CFOUR, GAMESS, NWCHEM, PSI4, and select partial calculators
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FIG. 3. Layout and access pattern between selected existing and planned (marked by ∗) community quantum chemistry codes, QCENGINE, and QCDB. Community
codes (i) in a variety of languages are wrapped in QCSCHEMA input/output by a QCENGINE harness (ii) and (iv), which may be light (if the code has an API or structured
output) or heavy (if only text output available). The QCDB harnesses (iii) and (v) add unifying and ease-of-use layers atop the QCENGINE calls. Whereas analytic ener-
gies and derivatives are classified as programs (ii) and (iii) and call QC codes directly, multi-stage and post-processing jobs are written as procedures (iv) and (v) for
composability and distributability and call programs in turn. The QCDB driver provides API access to both sets. Labels (a)–(d) correspond to the stages of unified input
in Fig. 2.

[Fig. 3(iii)]. Note that output harvesting capabilities (results
available programmatically as opposed to text files) may lag
behind those for input execution. A test suite that ensures
matching values can be extracted from different programs has
been established for both QCENGINE and QCDB to docu-
ment differing conventions (e.g., canonicalization for ROHF CC,
all-electron vs frozen-core). Uncovered incorrect values or missing
properties have been reported to the code developers for further
investigation.

1. ADCC
The interface to ADCC allows for computations of excited

states based on the algebraic-diagrammatic construction (ADC)
scheme for the polarization propagator. Several methods are avail-
able, including ADC(2), ADC(2)-x, and ADC(3), together with the
respective core-valence separation (CVS) and spin-flip variants. For
all aforementioned methods, excitation energies and properties are
accessible. The interface uses PSI4 to compute the SCF reference
state first and then calls adcc via its Python API. A minimum adcc
v0.15.1 is required.

2. CFOUR
Many CFOUR features are available to both QCENGINE

and QCDB, including most ground-state many-body perturba-
tion theory and coupled-cluster energies, gradients, and Hessians:
Hartree–Fock, MP2, MP3, MP4, CCSD, CCSD(T) with RHF, UHF,
and ROHF references. Excited states are available for running but
not parsing. Special features include CC with quadruple excita-
tions through the NCC module, the ability to compute the diag-
onal Born–Oppenheimer correction using coupled-cluster theory,
and, after revision, second-order vibrational perturbation theory
(VPT2) (see Sec. II C 6). The interface generates text input and
collects mixed text and binary output. A minimum CFOUR v2.0 is
required.

3. GAMESS
The GAMESS interface for QCENGINE and QCDB provides

Hartree–Fock, DFT, MP2, and coupled-cluster methods. Special
features include full configuration interaction. In the future, the
GAMESS interface will also provide effective fragment potential
(EFP) capability through potential file generation (see Sec. II C 7)
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TABLE I. Interfaced programs in QCENGINE and QCDB. For each, availability of one or more methods for energy (E), gradient
(G), and Hessian (H) is shown, as well as collection of properties (e.g., one-electron energy or dipole) and wavefunction
quantities (e.g., number of basis functions and orbitals). Symbols are present ( ), absent ( ), or inapplicable (). Non-QC
programs are not suitable for QCDB. Program I/O is handled primarily through QCSCHEMA API (Q), API (A), structured XML,
JSON, binary (S), or text (T).

CMS program QCENGINE QCDB Cite I/O
E G H Prop. Wfn E G H

Quantum chemistry
ADCC 44 and 45 A
CFOUR 46 TS
GAMESS 47 T
MOLPRO 48 and 49 S
MRCHEM 50 and 51 S
NWCHEM 52 T
PSI4 53 Q
Q-CHEM 54 TS
QCORE 55 S
TERACHEM 56 and 57 Q,T
TURBOMOLE 58 and 59 T

Semi-empirical
MOPAC 60 T
XTB 61 Q

Molecular mechanics
OPENMM 62 A
RDKIT 63 A

Analytical corrections
DFTD3 8 and 64 T
DFTD4 65 and 66 Q
GCP 67 and 68 T
MP2D 69 and 70 T

Machine learning inference
TORCHANI 71–73 A

and running pure EFP calculations on molecular clusters, energy
("gms-efp"). A particular complication for GAMESS is the con-
trolled molecule and custom basis syntax, which led to QCDB
feeding only symmetry-unique atoms and their full basis sets into
the GAMESS input file. As QCENGINE does not have symmetry
capabilities, QCENGINE-based GAMESS calculations are restricted
to C1. The interface generates text input and collects text out-
put. The harness has been tested with the GAMESS 2017 R1
version.

4. MOLPRO

Energies and gradients are available in QCENGINE from
Hartree–Fock, DFT, MP2, CCSD, and CCSD(T) levels of the-
ory, including some local methods. The interface generates text
input and collects XML output. A minimum MOLPRO v2018.1 is
required.

5. MRCHEM

Thanks to a harness to the MRCHEM software package,
quasi-exact energies and selected properties in the multiwavelet,
multiresolution basis are available with QCENGINE. MRCHEM pro-
vides an efficient implementation for Hartree–Fock and DFT. Elec-
tric dipoles, quadrupoles, static and frequency-dependent polar-
izabilities, magnetizabilities, and NMR shielding constants are
available. At variance with GTO-based quantum chemical soft-
ware packages, the basis used in MRCHEM is adaptively refined:
thanks to the multiwavelet framework, these results are exact
to within the user-requested precision.74 As a practical conse-
quence, only the method keyword is required to define an input
model to MRCHEM. JSON files are used to handle communica-
tion between QCENGINE and MRCHEM. The harness can lever-
age the hybrid MPI/OpenMP parallelization of MRCHEM, provided
suitable resources are available. A minimum MRCHEM v1.0.0 is
required.
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6. NWCHEM

The NWCHEM interface for QCENGINE and QCDB provides
a large selection of the quantum mechanical methods available,
including Hartree–Fock, DFT, MP2, and coupled-cluster methods
[both the code automatically derived and implemented with the
Tensor Contraction Engine75 (TCE) and the hand-coded imple-
mentations, where available]. Additional calculations available in
the TCE include configuration interaction through single, doubles,
triples, and quadruples level of theory and MBPT methods through
the fourth order. Special features include CCSDTQ energies, excited
states through equation of motion (EOM) coupled-cluster energies,
and relativistic approximations. The interface generates text input
and collects text output. The harness has been tested with NWCHEM
v6.6 and v7.0.

7. PSI4
Essentially, all PSI4 features are available to QCENGINE

and QCDB, as PSI4 communicates natively in QCSCHEMA
(psi4 – qcschema in.json) and QCDB began as the PSI4 driver.
These include conventional and density-fitted Hartree–Fock, DFT,
MP2, and coupled-cluster methods. Special features are symmetry-
adapted perturbation theory, coupled-cluster response proper-
ties, density-fitted CCSD(T) gradients, and optimized-orbital MP2,
MP2.5, and MP3 energies and gradients. Wavefunction information
is returned in QCSCHEMA format. The interface generates JSON
(QCSCHEMA) input and collects JSON output. A minimum PSI4
v1.3 is required for QCENGINE and v1.4 for QCDB.

8. Q-Chem
Energies, gradients, Hessians, and some properties are available

in QCENGINE at the SCF (Hartree–Fock and tens of DFT func-
tionals) and MP2 levels (both conventional and density-fitted). The
interface generates text input and collects mixed text and binary
output. A minimum Q-CHEM v5.1 is required.

9. QCORE

Energies, gradients, and Hessians are available in QCENGINE
from Hartree–Fock, DFT, and extended tight-binding (xTB).
QCORE along with PSI4 are the two programs that can return wave-
function information in QCSCHEMA. The interface generates JSON
input and collects JSON output. A minimum of QCORE v0.7.1 is
required.

10. TERACHEM

TERACHEM features two modes for driving computations via
QCENGINE: a standard text interface and a typed Protocol Buffers76

interface. The former generates text input and collects text output to
provide energies and gradients from Hartree–Fock and DFT levels
of theory. A minimum TERACHEM v1.5 is required.

TERACHEM’s Protocol Buffers (TCPB) server57 interface offers
a second way to drive computations using QCENGINE. It provides
energies and gradients from Hartree–Fock and DFT levels of the-
ory, molecular properties including dipoles, charges, and spins, and
limited wavefunction data including alpha- and beta-spin orbitals
and orbital occupations. The TCPB interface also accelerates cal-
culations by performing GPU initialization routines once at server
startup. As a result, subsequent computations can begin instan-
taneously, thereby providing substantial speed-up for small sys-
tems (∼ 10 heavy atoms) and minor speed-up for medium systems

(∼100 atoms).77 The TCPB interface requires the installation of an
additional Python package TCPB78 minimum v0.7.0 to power the
QCENGINE integration. Subsequent updates to the TCPB package
will expand the set of properties and wavefunction data available
from TERACHEM via QCENGINE.

11. TURBOMOLE

Energies, gradients, and Hessians are available in QCENGINE
for Hartree–Fock, many DFT functionals, and define-fitted MP2,
MP3, MP4, and CC2. TURBOMOLE’s interactive define function
for processing input proved an extra challenge to integrate with
QCSCHEMA. The interface generates interactive text input and col-
lects text output. The harness has been tested with TURBOMOLE v7.3
and v7.4.

12. XTB
The interface uses the Python API of XTB, which provides

QCSCHEMA support, to generate JSON (QCSCHEMA) input and
collect JSON output. A minimum of XTB v6.3 is required.

13. dftd3 and dftd4
A Python API to Grimme’s DFTD3 executable for comput-

ing variants of -D2 and -D3 for arbitrary QCSCHEMA Molecule
with automatic or custom parameter sets has been available in PSI4
for several years.8,79,80 This has been adapted as a ProgramHarness
for QCENGINE and QCDB. The interface generates text input and
collects text output. A minimum of DFTD3 v3.2.1 is required.

For the separate DFTD4 software, the interface uses the
Python API, which provides QCSCHEMA support, to generate JSON
(QCSCHEMA) input and collect JSON output. A minimum of DFTD4
v3.1 is required.

14. GCP
Energies and gradients are available for the geometrical coun-

terpoise correction GCP program developed by Kruse and Grimme
that corrects the inter- and intramolecular basis set superposition
error (BSSE) in Hartree–Fock and DFT calculations.68 It also offers
the GCP-part of the “3c” correction used in composite methods like
HF-3c or PBEh-3c.81 The interface generates text input and collects
text output. The harness was tested with GCP v2.02.

C. Procedure capabilities
Whenever a quantum chemistry work sequence takes in

QC-program-agnostic energies, gradients, Hessians, or properties
(i.e., AtomicResults) but requires multiple ones (e.g., a finite dif-
ference derivative) or needs additional software [e.g., EFP poten-
tials or symmetry-adapted linear combination (SALC) coordinates]
or needs to take action in multiple stages (e.g., a geometry opti-
mizer) or could combine AtomicResults from different programs
(e.g., a composite method), it is classified in QCENGINE or QCDB
as a procedure [see Fig. 3(iv-v)]. Procedures are implemented in
a ProcedureHarness to facilitate modularity and address O-c.
Because procedures act upon generalized quantities, any code inter-
faced with QCENGINE or QCDB gets all of the applicable procedures
“for free.” Together, programs and procedures are elements that can
be composed into workflows both simple (e.g., opt + freq + vib) or
complex as in Sec. III.
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Presently available in QCENGINE are the GEOMETRIC,
PYBERNY, and (Python) OPTKING geometry optimizers, the first of
which has been used extensively (>380k optimizations) by the Open
Force Field82 community. Presently available or anticipated (∗) for
QCDB are the Composite, FiniteDifference,∗ ManyBody,
diatomic, and vib routines inherited from the PSI4 recursive
driver.14 The PSI4 OPTKING geometry optimizer, written in C++,
has been redeveloped in Python as a more versatile tool for future
development and with the independence suitable for QCDB, while
RESP∗ and CRYSTALATTE∗ have been expanded from PSI4 to
work with QCDB. Procedures makefp∗ and vpt2∗ make use of
specially extractable features from GAMESS and CFOUR, respec-
tively, and require installation of the parent code. Similarly, FIN-
DIF retains for the short term a dependence on PSI4. Note that
the full capabilities from proven software components that were
once or are presently partially or fully interfaced are in the proce-
dure descriptions below. Procedures in QCENGINE and QCDB have
passed through the proof-of-principle stage and are presently being
reworked and expanded into the below forms; current availability is
limited.

1. Geometry optimizers
To be used by QCENGINE or QCDB, a geometry optimizer

must be able to take an input geometry in Cartesian coordinates and
to take an arbitrarily sourced gradient and produce a next-candidate
geometry displacement rather than be in control of both gradient
and geometry-step stages. Regrettably, this eliminates most opti-
mizers embedded in QC programs. Some alternatives are Wang’s
GEOMETRIC project,83,84 which uses the TRIC coordinate system to
specialize in interfragment and constrained optimizations, King’s
OPTKING,85 which is a conventional IRC- and TS-capable QC opti-
mizer, and Hermann’s PYBERNY,86 also a QC-focused optimizer.
OPTKING can apply flexible convergence criteria including those
related to energy change and the maximum or root-mean-square of
the gradient or displacement, and it has the most common settings
for many embedded/native optimizers conveniently accessible
as keywords. QCENGINE presently has available GEOMETRIC,
PYBERNY, and the Python OPTKING, while QCDB only has the
original C++ OPTKING. After a planned driver update, all three
Python optimizers will work with QCENGINE and hence with
QCDB. All optimizers communicate through schema, in particular,
a QCSCHEMA OptimizationInput that contains an ordinary
AtomicInput as template for the gradient engine. Optimizations
are called through QCENGINE using qcng.compute_procedure
({“input_molecule”: . . ., “keywords”: {“program”: “games
s”},“input_specification”: {“model”: {“method”:“mp2”,
“basis”: “6-31G”}}}, “geomeTRIC”) or qcdb.optking(“gm
s-mp2/6-31G”), where the latter can take as model chemistry any
sensible combination of other procedures (i.e., qcdb.optking
(“gms-mp2/[23]zapa-nr”, bsse_type=“cp”)).

2. vib: Harmonic vibrational analysis
The harmonic vibrational analysis routine is automatically run

after any qcdb.frequency() computation.87 Taking in a Hessian
matrix, the molecule, basis set information, and optional dipole
derivatives, vib() performs the usual solution of whole or partial
Hessians into normal modes and frequencies, reduced masses, turn-
ing points, and infrared intensities, all returned in schema. Other

features include rotation-translation space projection, isotopic sub-
stitution analysis, Molden output, and a full thermochemical report
incorporating the best features of several QC programs’ vibrational
output.

3. FiniteDifference: Derivatives
As QCENGINE and QCDB are focused on interfacing QC

programs’ analytic quantum chemical methods or unique features,
user calls for non-analytic derivatives in QCDB are by default routed
through the finite difference procedure.87 This procedure (origi-
nally from PSI4) performs three- or five-point stencils for gradi-
ents and Hessians (full or partial), communicates through schema,
and is parallelism-ready. The alternative of letting the internal
finite difference of a QC program run and then parsing output
files for multiple energies or gradients has been implemented in
some cases, but this is not preferred (nor for internal geometry
optimization).

4. Composite: Composite method and basis
extrapolation treatments

Whenever an additive model chemistry is designated that
involves differences of method (i.e., a focal point analysis or “delta”
correction), basis [i.e., a complete basis set (CBS) extrapolation],
keywords (e.g., all-electron minus frozen-core), or any combina-
tion thereof, the Composite procedure can encode it. Here, one can
mix QC programs to perform conventional coupled cluster with
CFOUR and DF-MP2 with PSI4, for example. Implementing new
basis extrapolation formulas is simple, and it works on gradients and
Hessians, as well as energies. If a subsidiary method energy can be
obtained in the course of a target method, the procedure will rec-
ognize and avoid the unnecessary calculation (thus a TQ MP2 cor-
relation energy extrapolation atop a DTQ HF energy will do 3, not
5, jobs). Input specification can be through API, schema, or strings
(a user-friendly example is in the final paragraph of Sec. II E 5). All
Composite communication is through schema, and the procedure is
parallelism-ready.

5. ManyBody: Fragmentation
and many-body approaches

All fragmentation and basis set superposition error (BSSE)
treatments are collected into the ManyBody wrapper for many-body
expansion (MBE) inherited from PSI4. The fragmentation pattern
known from the QCSCHEMA Molecule is applied to determine
the degree of decomposition into monomers, dimers, etc., up to
the full molecule, or the user can set the max_nbody level. Total
quantities (energy, gradient, or Hessian) and interaction quantities
are accessible through uncounterpoise (noCP), couterpoise (CP),
and Valiron–Mayer functional counterpoise (VMFC) schemes.9,88,89

Geometry optimization with many-body-adapted quantities is also
available. The wrapper can act on uniform single-method quantities
or apply different model chemistries to each expansion level or inter-
face with Composite or FiniteDifference results or both. All
ManyBody communication is through schema, and the procedure is
parallelism-ready.

6. vpt2: Anharmonic vibrational analysis
Anharmonic vibrational analysis has long been a feature of

CFOUR. It requires a high-quality harmonic frequency procedure as

J. Chem. Phys. 155, 204801 (2021); doi: 10.1063/5.0059356 155, 204801-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

input. It then performs further Hessian computations at geometry
displacements along the normal coordinates. These are then com-
bined into a third-order and partial fourth-order potential followed
by vibrational analysis. Although many analytic Hessians are avail-
able in CFOUR itself, the qcdb.vpt2() procedure focuses on the
formulation through analytic gradients, as being suited to distributed
computing and generalization to program-generic gradients. Thus,
CFOUR is a helper program that, with the QCDB procedure,
can perform anharmonic analyses of, for example, CCSD (from
CFOUR gradients called through QCDB), DFT (from another QC
program’s gradients), or CBS (that produces a generalized gradi-
ent). All qcdb.vpt2() communication is through schema, and the
procedure is parallelism-ready.

A complication is that the vpt2() procedure is essentially
a series of invocations of CFOUR subcommands like xcubic,
which expect files in native JOBARC form with energies, dipoles,
and gradients. To accommodate this, QCDB uses Python mod-
ules to write imitations of the native files in string representa-
tions of binary form, which is lossless. Hence, a PSI4 DFT gra-
dient is represented as a JOBARC to pass through the CFOUR
mechanisms.

7. makefp: EFP library generation
The two engines for computing EFP interactions, LIBEFP90,91

and GAMESS,47 use the same parameter file for storing the EFP
potential at a given basis set and monomer geometry. Only GAMESS
can generate that file, and the routine has been wrapped by
QCDB for access through qcdb.makefp(). The resulting .efp
file contents are returned in the QCSCHEMA output and so are
available for writing to a personal library or to feed to subse-
quent qcdb.energy(“gms-efp”) (or “lefp-efp” or “p4-efp”)
calls to determine non-covalent interactions between EFP frag-
ments. Certain EFP integrations await expansion of QCSCHEMA
Molecule.

8. Diatomic: Spectroscopic constants
The electronic potential analysis for diatomic molecules has

long been encoded in PSI4 as a post-processing procedure from
a list of electronic energies along the interatomic coordinate.
This has been reworked as a procedure and is demonstrated
in Sec. III.

9. RESP: Charge fitting
The restrained electrostatic potential (RESP) charge model92

is obtained by an iterative fitting of the electrostatic potential
emerging from QC calculations on one or several conformers of
a molecule to a classical point-charge potential. An existing RESP
plugin93,94 drives the property calculations with PSI4, and this
has been expanded to alternately draw from GAMESS using the
QCDB API.

10. CrystaLattE: Crystal lattice energies
The process of estimating the lattice energy of a molecu-

lar monocrystal via the many-body expansion is encoded in the
CRYSTALATTE software.95,96 Starting with extracting a subsample
from a cif file, the program handles fragmentation into dimers,
trimers, etc., identifies unique N-mers, prepares QC inputs, and
keeps track of many-body results into final quantities. Although

the thousands of component calculations mean that it will only
become practical after QCDB upgrades to the distributed driver (see
Sec. II D), CRYSTALATTE is ready to be integrated in serial mode in
QCDB.

D. QCDB common driver
The driver component of QCDB [Fig. 3(vi)] is the fairly

lightweight coordinator code that (1) facilitates the interactive API
of set_molecule, set_keywords, energy ("nwc-b3lyp/
6-31g∗"), print(variable("b3lyp dipole")) rather than
communicating through QCSCHEMA; (2) imposes cross-QC-
program suggestions like tightening convergence for higher
derivatives or for finite difference; and (3) weaves together pro-
cedures and programs so that optimize("mp6") commences
finite difference or energy("ccsd/cc-pv[tq]z", bsse_type
="vmfc") runs ManyBody, Composite, and program harnesses
in the right sequence. The driver is primarily concerned with
processing user-friendly input [“User API” in Fig. 3(vi)] into
QCSCHEMA as directly as possible and then routing it into a
program harness [Fig. 3(iii) for analytic single-points] or through
procedures [Fig. 3(v)] on their way to program harnesses (e.g.,
for Composite, FiniteDifference) or through procedures
after program harnesses [e.g., for resp(), vib()]. In order to
make good use of the QCDB common driver, a QC program must
register capabilities and information. These include the available
analytic methods (for appropriate use of finite difference), insider
best-practice options from the program’s developers (see Sec. II E 9),
and all keywords and their defaults (for flexible and informative
keyword validation through Python).

The common driver is based upon the PSI4 v1.0 recursive
driver described in Ref. 14 that unifies many complex treatments
(e.g., MBE and CBS) into a few user-facing functions that focus
on what, not how. After polishing in PSI4 v1.5, a new distributed
driver with the same interface but tuned to QCSCHEMA communi-
cation and embarrassingly parallel execution through QCARCHIVE
INFRASTRUCTURE will be substituted. See Sec. IV and Fig. 2 of
Ref. 53 for details.

E. Technical aspects to interoperability
Details of specifying and running QC computations, particu-

larly arbitrating the expression of QCSCHEMA by QCENGINE and
QCDB, are collected below. Readers who prefer a software overview
should proceed to Sec. III. Symbols like (I-b) mark strategies for
overcoming or unifying the expertise barriers to using QC programs
enumerated in the initial paragraphs of Sec. I.

1. Memory
User specification of memory resources is managed by

QCENGINE and is outside the QCSCHEMA. By default, the job is
given all of the compute node’s memory (less some buffer). If user-
specified, input units are in GiB, e.g., qcdb or qcng.compute(. . .,
local_options={"memory": 10}) (I-b). In either case, the
memory quantity is translated into DSL keyword names such as
memory_size and mem_unit for CFOUR. Because QCENGINE
exercises total control over memory, any specification misplaced as a
keyword into QCSCHEMA is ignored and overwritten in QCENGINE
or raises an error if conflicting in QCDB. An exception is cases like
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NWCHEM, where aggregated memory is managed by QCENGINE
but distribution between heap, stack, and global is editable through
keywords (e.g., memory__total or memory__stack).

2. Disk
The working directory and execution environment are also

governed by QCENGINE, and user modifications are outside
QCSCHEMA. Each job is run in a quarantined scratch direc-
tory created for it and populated by input and any auxiliary
files. Execution occurs through Python subprocess (or less often
through Python API). Output files and any program-specific files
in text or binary format (including the generated input) are col-
lected and returned in QCSCHEMA fields before scratch directory
deletion (I-e).

3. Parallelism
The execution flags or environment variables that control CMS

program parallelism and their single- or multi-node capabilities are
built into their respective QCENGINE harnesses. A job gets the full
single-node resources (max cores and near-max memory) assigned
to it by default; multinode execution (only for NWCHEM at present)
requires explicit specification. Assigning instead an optimal portion
of the full resources on the basis of method and memory could be
implemented in a harness, but none presently do. User specification
of parallelism is managed by QCENGINE and is outside QCSCHEMA
[e.g., qcdb or qcng.compute(. . ., local_options={"ncores":
4})] (I-e).

4. Molecule specification
Molecule specification is the most important aspect that

QCENGINE and QCDB control via QCSCHEMA to the exclusion
of a program’s DSL. The QCSCHEMA Molecule can store mass,
isotope, charge/multiplicity, fragmentation, ghostedness, and con-
nectivity information (and more), along with the basic element and
Cartesian geometry data (I-d). All quantities are stored in amu or
Bohr to avoid imprecision from multiple unit conversions through
different revisions of physical constants.

Initializing a molecule can occur through a variety of string
formats (of Cartesian coordinates) or directly by arrays. Exten-
sive validation and application of physics-based defaults follows
such that string Snippet 1 becomes (Ref. 97 for details) the schema
Snippet 2. In the QCDB API, molecules can additionally be
specified via Z-matrix, mixed Cartesian/Z-matrix, and with variable
and deferred coordinates. QCSCHEMA Molecule holds almost all
data relevant to molecular system specification in QC, including
EFP fragments, which are parseable without additional software
and are stored in a secondary object. Items that appear in the
molecule specification sections of some programs but do not fit in
QCSCHEMA Molecule, such as the stars signaling optimizable

SNIPPET 1. A string molecule input with complicating mass number, fragments,
and implicit multiplicity.

SNIPPET 2. QCSCHEMA MOLECULE from Snippet 1. Translation described
at Ref. 97.

internal coordinates in CFOUR, reside in an extras section. (EFP and
extras are future extensions.)

Like memory or other aspects monopolized by QCSCHEMA,
user specification of the molecule in the DSL through keywords
(e.g., scf__nopen in NWCHEM or contrl__icharg in GAMESS)
is ignored and overwritten in QCENGINE or raises an error if
inconsistent in QCDB.

A requirement for combining vector data from multiple jobs
is that the data be in a common frame of reference. Although each
QC program has a standard internal orientation, these can be dif-
ferent between programs or between input specifications, and not
all programs can return quantities in an arbitrary input frame and
atom ordering. To smooth over inconsistent capabilities, the input
geometry and the output geometry are both collected from output
data, and an aligner computes the displacement, rotation matrix,
and atom mapping needed to transform between them. Then, any
vector results have the appropriate transformations applied so that
all results in AtomicResult are in input orientation (O-a). This
occurs for both QCENGINE and QCDB when the Molecule fields
fix_com and fix_orientation are True. (Here, “fix” is used in
the “fasten” sense, not the “repair” sense.) When False, QCENGINE
returns in program native frame, while QCDB returns in PSI4 native
frame.

5. Methods
Perhaps the most compelling element of QCSCHEMA is

the ability to request methods by a single string rather than
piecemeal (e.g., "blyp-d3(bj)", "mp2", "cis" in place
of {"method": "blyp","dft_d": "d3_bj"}, {"mplevl":
2}, {"calclevel": "hf","excite": "cis"}), thereby closely
tying results to the model section (with subfields method and
basis) of the data layout (barring algorithm, space, auxiliary
basis set choices). As far as possible, all method specifica-
tion and no extraneous information are consolidated into the
atomicinput.model.method field. This is the primary translation
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effort of each QCENGINE harness, as shown by the uniformity
of the field in Fig. 2(b). In calling QCENGINE, the user supplies
the canonical method name (I-b). There is no compensation for
program peculiarities; for example, "b3lyp" returns different
answers if submitted to programs that have made a different choice
of VWN3 vs VWN5, consistent with the principle that users can
translate an input directly into QCSCHEMA.

A complication to this principle is when programs conflate
non-method information like algorithm (e.g., rimp2) or alternate
code paths (e.g., task tce energy) into the primary method
call. To maintain QCSCHEMA integrity for model.method, the
project invents top-level keywords like {"qc_module": "tce"}
to allow deliberate choice of the TCE over hand-coded CC in
NWCHEM and {"mp2_type": "df"} to instruct DF in GAMESS,
NWCHEM, or Q-CHEM. Keyword qc_module can also control
choice of VCC/ECC/NCC in CFOUR and DFMP2/DFOCC/DETCI in
PSI4, although these also have local knobs cfour_cc_program and
psi4_qc_module.

Method specification in QCDB is similar to QCENGINE
except a compound program-method argument like optimize
("nwc-mp2") is used. This difference is historical and endures
for ease of specifying composite model chemistries like gradient
("p4-mp2/cc-pv[56]Z + d: nwc-ccsd/cc-pv[tq]z + d: c4-cc
sdtq/cc-pvdz")98 employing PSI4, NWCHEM, and CFOUR for
different stages. Additionally, QCDB tests the major methods to
ensure the same string yields the same result (I-f). It also maintains
a list of capabilities, so, for example, ROHF CCSD in NWCHEM can
be automatically routed to TCE [see Fig. 2(d)]. User specification
of method information in keywords instead of through the model
field is overwritten without warning in QCENGINE, while in QCDB,
contradictory information yields an error.

6. Basis sets
Notwithstanding the curation efforts of the Basis Set

Exchange99 (BSE), every QC program maintains an internal library
of basis sets with uneven upstream (from the basis set developer)
updates applied, uneven downstream (by the program owner)
specializations applied, and different spellings for accessing a
given basis, not to mention different data formats. In QCENGINE,
only the internal library of a program is used, accessed from the
atomicinput.model.basis field. Thus, due to DSL, the same
string value directed toward different programs can lead to differ-
ent results, and different strings can lead to the same results, as in
Fig. 2(b). To allow consistency between programs and to reduce user
DSL demands, QCDB pulls basis sets from a single library (PSI4’s in
.gbs format, which is amply stocked with Pople, Dunning, Peterson,
Karlsruhe, and other orbital and fitting basis sets) and performs the
translation into the custom per-atom specification and format for
each program, including setting spherical or Cartesian for d-shells
and higher according to basis set design. In this way, a standard
case-insensitive label and a consistent interface to custom and
mixed basis sets is available (I-b). Alternatively, QCDB can act like
QCENGINE to access a program’s internal basis set library through
program-specific keywords (e.g., set gamess_basis__gbasis
accd vs set basis aug-cc-pvdz). While the PSI4 basis set
library is used at present, future work will switch to the new MolSSI
BSE.

7. Execution
Apart from CMS programs, QCENGINE requires only

QCELEMENTAL and some common Python packages. It is readily
installed by conda install qcengine -c conda-forge or
pip install qcengine. Execution occurs through CLI or
one-call API with JSON-like input. For example, if AtomicInput
specification {. . ., "model": {"method": "ccsd","basis":
"aug-cc-pvdz"}} was in a file, qcengine spec run cfour
would run CFOUR and return QCSCHEMA AtomicResult
(I-e). If the specification was a dictionary in a Python script,
then qcengine.compute(spec, "cfour") produces the same
results, as in the “execution” column of Fig. 2(b). QCENGINE can
be run through a queue manager, but for more than incidental
jobs, users should consider the job orchestration capabilities of
QCFRACTAL.

QCDB requires only QCENGINE and is installed similarly
by conda install qcdb -c psi4. Execution modes CLI and
one-call API are called analogously, only replacing qcng by qcdb
(and ccsd by c4-ccsd) as shown in Figs. 2(c) and 2(d). Addition-
ally, though, QCDB can function through an interactive driver
API to reuse molecule and keyword sets and perform more com-
plex sequences. This is shown in Snippet 3 that scans an energy
potential and then performs a computation at the optimum dis-
tance at a better level of theory. This is analogous to the Psi-
API mode in PSI4. A simplified, plain-text input that gets pro-
cessed into the API and is analogous to the PSIthon mode of PSI4
will be available after further integration with PSI4; an example is
at Snippet 4.

SNIPPET 3. An interfragment potential energy scan followed by composite energy
in QCDB.

8. Modes
QCDB operates in two modes, which treat keywords, particu-

larly keyword defaults, differently. QCDB supports distinct modes of
operation to tailor its capabilities toward driver integration of mul-
tiple programs (when unified results are needed) or toward inter-
facing a single program (when user familiarity is preferred). Most
controlling is the driver or unified mode, which endeavors to elicit
from different QC programs identical results out of identical input
conditions (roughly the combination of method, basis, reference,
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active space, and integrals treatment) (I-f). Here, the driver imposes
QCDB-level defaults such as non-DF algorithms, all-electron spaces,
and graduated convergence criteria for energy vs analytic deriva-
tive vs finite difference derivative. This mode is required for multi-
program procedure runs [e.g., energy("p4-mp2/cc-pv[tq]z
+ d:c4-ccsd/cc-pvtz")] and is active by default.

Another mode, denoted sandwich since the QCDB pre- and
post-processing is less intrusive, is for users focusing on a sin-
gle QC program who want the driver routines, method mapping
[e.g., energy("gms-ccsd(t)",bsse_type="vmfc")], and I/O-
wrapping advantages of QCDB but do not want surprise resets
of their accustomed defaults. Driver-suggested QCDB-level (e.g.,
frozen-core), driver-level (e.g., graduated derivative convergence),
and best-practices (e.g., module selection) defaults are all turned off.
This mode is effectively how QCENGINE runs.

Some background facts to illustrate the modes:

● For the default MP2 algorithm, PSI4 uses DF, while CFOUR,
GAMESS, NWCHEM, and QCDB use CONV.

● The CFOUR, GAMESS, NWCHEM, PSI4, and QCDB default
HF density convergences are 10−7, 10−5, 10−4, 10−8, and
10−8, respectively.

● For the CCSD energy from CFOUR, the default CC module
is VCC, while QCDB best-practice is ECC.

● The NWCHEM default task ccsd energy does not run
for open-shell, while QCDB uses the CCSD module for RHF
and TCE module for ROHF.

● GAMESS freezes core by default, while CFOUR, NWCHEM,
PSI4, and QCDB correlate all electrons.

In the unified mode, energy("gms-mp2") and
energy("p4-mp2") both run all-electron MP2 without DF and
with 10−8 convergence. After setting ROHF, energy("c4-ccsd")
runs through ECC, and energy("nwc-ccsd") runs through TCE,
again both HF to 10−8 and all-electron. In contrast, sandwich mode
energy("gms-mp2") produces a conventional frozen-core MP2
energy converged to 10−5, while energy("p4-mp2") produces a DF
all-electron value converged to 10−8. In the ROHF CCSD case, the
CFOUR job runs as all-electron through VCC with HF converged
to 10−7, while the NWCHEM submission declines to run.

9. Keywords
QC programs have hundreds of keywords controlling their

operation on matters of substance (e.g., RAS3), strategy (e.g., DIIS),
computer science (e.g., INTS_TOLERANCE), and research conve-
nience (e.g., DFT_NEW). The variety in spelling and text arrange-
ment by which the same ideas are communicated to different
QC programs is staggering (and a considerable barrier to trying
new codes). The necessity to represent any (single-stage, single-
program) input file as QCSCHEMA requires mapping rules so that
a user familiar with the native DSL can readily translate into the
key/value representation of an AtomicInput’s keywords field.
The primary guideline is that the right-hand side value must be
a simple data quantity in natural Python syntax (e.g., CFOUR’s
3-1-1-0/3-0-1-0 becomes [[3, 1, 1, 0], [3, 0, 1, 0]]),
and the left-hand side key is a string that encodes any level of
nesting with double-underscore (e.g., GAMESS’s contrl__scftyp
or NWCHEM’s dft__convergence__density). A present/absent
keyword (as opposed to a key/value pair) becomes a boolean,

such as NWCHEM scf__rohf. The ProgramHarness handles for-
matting the keywords field (back) into the input grammar (I-d),
including quashing unnecessary case-sensitivity (e.g., Qz2p con-
verts to lowercase for CFOUR, while a filename option passes
unchanged). For QCDB, prefixing a keyword by program name tar-
gets it toward a particular program; hence, reference becomes
cfour_reference or psi4_reference.

The greatest challenge to mapping rules is that some programs
have an input structure that blurs module nesting vs keyword
name vs keyword value. An extra mapping rule not strictly
required by QCENGINE is for keywords to be independent and
granular such that they are one-to-one with other programs,
not overworked like dft__grid={"lebedev": (99, 11),
"treutler": True} (insufficiently granular) nor underworked
like scf__rhf=False plus scf__uhf=True (insufficiently inde-
pendent). QCDB uses internal aliasing and mutually exclusive
groups to help keyword specification be intuitive for native users.

Making a QCSCHEMA fed to multiple programs produce uni-
form output is not within the scope of QCENGINE. Barriers to
accessing multiple QC backends through a single DSL or, more
intricately, to compatibly mixing backends include (a) heteroge-
neous control knobs across QC programs each with its own keyword
set and (b) incompatible results due to different defaults yielding
slightly different answers. QCDB takes up the task of uniting key-
words into a single DSL for a further layer of interoperability. Unlike
QCENGINE, QCDB registers valid keywords for each QC program
and can apply custom validation functions to each. Additionally reg-
istered are unified keywords so that, for example, setting REFERENCE
is translated into CFOUR_REFERENCE or GAMESS_CONTRL__SCFTYP,
as shown in Figs. 2(c) and 2(d) (I-b, I-f). As mentioned above,
insisting on granular keywords for the QCSCHEMA representa-
tion allows cleaner mapping between QC programs. As mentioned
below, QCDB also encodes best-practice keywords to allow shorter
inputs, context-dependent defaults, and bridging the developer-user
knowledge gap. QCSCHEMA or QCDB API offer ample opportuni-
ties for users to submit contradictory input specification, several of
which are shown in Snippet 4.

SNIPPET 4. Contradictory input opportunities.

QCDB resolves competing keyword suggestions and require-
ments by the user, driver, schema, and best practices into a final
keyword set that is passed to QCENGINE for final formatting.
Because of this step, incompatible keywords pass without warning
in QCENGINE, while in QCDB, contradictory information yields an
error.
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Codebase authors know best how to run a computation,
but they may have conveyed that knowledge only through
documentation and forum posts. Due to the unwieldiness of large
legacy codebases and the circuity of research (and the burden of
backward compatibility), it can happen that a method needs sev-
eral keywords to express it or that valuable approximations or
code-routing do not get turned on by default. Due to its layered
Python/C++ structure, PSI4 naturally has a place to express such
“best-practice” defaults based on method, basis, system size, etc. The
advantage is that simple method + basis inputs yield production-
grade results. Thus, QCDB takes advantage of working with code-
base authors and the intermediate Python layer to implement best-
practice keywords based on available calculation data (I-c). These
take the form of routing to the best (or only capable) module for a
given method, reference, derivative level, and active space; of sup-
plying sensible defaults such as the number of electrons or roots; of
tuning convergence to the derivative and needed precision (analytic
vs finite difference) at hand; or of specifying C1 or highest-Abelian
symmetry to modules with symmetry restrictions. Such options can
be overridden by the user and can be disabled in sandwich mode
(Sec. II E 8). These defaults are themselves subject to change as rec-
ommendations evolve, but their state is readily viewed in program
inputs.

10. QCVariables
The QC output stream, whether ASCII, binary, or structured,

is read immediately after program execution. Scalar and array
result quantities, such as PBE TOTAL ENERGY, MP4 CORRELATION
ENERGY and PBE TOTAL GRADIENT, CCSD DIPOLE, are extracted
and held as significant-figure-preserving floats or NumPy arrays,
respectively, and are known collectively as QCVariables (O-a).
Extraction uses the most precise available source, whether the stan-
dard output stream or available auxiliary files (e.g., CFOUR GRD).
The internal geometry is always collected, and any vector results
are manipulated in concert with it, as described in Sec. II E 4. For
QCENGINE, many of the same harvested quantities are directed
into QCSCHEMA AtomicResultProperties lists. Results are
available programmatically through qcdb.variable("mp2 total
energy") or atomicresult.properties.mp2_total_energy
in QCDB and QCENGINE, respectively.

A mild vexation in QC output files is that they contain differ-
ent quantities such as total vs correlation energy or opposite-spin vs
triplet energy that are interconvertible but not directly comparable.
QCVariables enforce the consistency of common QC definitions and
encode common combining rules (O-b). They are applied in post-
processing to ensure that a maximum of data gets harvested from
each run, that exactly the same quantities are collected from each
QC program, and that trivially defined methods such as SCS(N)-
MP2 and B3LYP-D3(BJ) need not clutter either the QC code or its
parsing.

Using binary representations of floats rather than truncated
strings from output files is a powerful argument for API integration
rather than parsing. Binary representation is essential when dealing
with many numbers with slight differences, such as finite differences
or MBE sums. Programs with Python APIs (and that use APIs for
internal inter-language transfer like between C++ and Python in
PSI4) can transfer data with full precision; for QCENGINE, these

are, for example, ADCC, OPENMM, RDKit, TORCHANI, DFTD4,
PSI4, TCPB TERACHEM, and XTB. Of these, the last four have
implemented QCSCHEMA directly for API access. An intermediate
step is to use structured output like XML or JSON from MOLPRO,
MRCHEM, and QCORE. For certain programs, a combination of
reading available binary files (e.g., 99.0 for return energy in Q-
CHEM and JOBARX/JAINDX for certain QC results and organi-
zational data in CFOUR) and text parsing is employed. Results
from other programs are collected solely through text parsing:
e.g., DFTD3, GAMESS, GCP, MOPAC, MP2D, NWCHEM, the clas-
sic interface to TERACHEM, and TURBOMOLE. Although results
are collected into QCSCHEMA from QC programs at the great-
est accessible precision, in order to maintain that precision among
the data transfers and storage of the QCDB and QCARCHIVE
INFRASTRUCTURE ecosystem, the QCELEMENTAL implementation
of QCSCHEMA (nominally a JSON Schema,16 which does not handle
binary or numpy.ndarray) includes MessagePack100 serialization.

III. EXAMPLE: DIATOMIC SPECTROSCOPIC
CONSTANT FITTING

With contemporary QC software, it is entirely possible to
approach the ab initio limit in the description of diatomic
molecules.101 Such spectroscopically accurate calculations require
extrapolating to the full configuration interaction and complete
basis set limits under the non-relativistic Born–Oppenheimer (BO)
approximation, followed by usually negligible corrections to account
for both relativistic effects and the BO approximation itself. Not
only does this type of calculation present a remarkable computa-
tional challenge [as it is significantly more expensive than CCSD(T),
the usually sufficient target of quantum chemistry], it can also be
practically difficult to incorporate multiple corrections and extrap-
olations into a workflow. While all of the necessary features are
present across various QC software packages, no single package
implements everything (let alone has the best implementation).
Furthermore, enforcing consistent geometries, basis sets, conver-
gence criteria, frozen orbitals, etc. between programs is a cumber-
some, often error-prone task. The QCDB driver remedies this prob-
lem by providing an easy-to-use Python interface to multiple QC
programs.

To showcase this capability of the QCDB driver, the ground
states of a few diatomic molecules (BH, HF, and C2) are opti-
mized at essentially the ab initio limit, and spectroscopic constants
are computed and compared to experiment. Previous studies esti-
mating the ab initio limit for the full set of standard spectro-
scopic constants of these molecules have been reported (see, e.g.,
Refs. 102–104). The present study provides improved treatments
for some of the small corrections and/or includes more correction
terms. Here, we include corrections for electron correlation beyond
CCSD(T), basis set effects beyond an already high-quality core-
valence quadruple/quintuple-ζ extrapolation, relativistic effects, and
the Born–Oppenheimer diagonal correction using four different QC
programs through the unified QCDB interface. The effect of each
correction is examined separately, as well as the cumulative effect of
all corrections. Understanding the cost and importance of each cor-
rection is helpful for designing reasonable extrapolations for larger
systems.
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TABLE II. Composite level of theory for spectroscopic constants and associated QC
programs.

Name Method Program

EBase CCSD(T)/cc-pCV[Q5]Z NWCHEM
ΔEBasis MP2/(aug-cc-pCV[56]Z − cc-pCV[Q5]Z) PSI4
ΔEDBOC CCSD/cc-pCVDZ CFOUR
ΔERel X2C-CCSD(T)/cc-pCVTZ PSI4
ΔECCSDTQ [CCSDTQ − CCSD(T)]/cc-pVTZ CFOUR
ΔEFCI (FCI − CCSDTQ)/cc-pVDZ GAMESS/

CFOUR

A spectroscopically accurate model chemistry energy (ETotal) is
defined as a base energy (EBase) with five separate corrections,

ETotal = EBase + ΔEBasis + ΔEDBOC + ΔERel

+ΔECCSDTQ + ΔEFCI. (1)

Each energy and the QC program(s) used to obtain it is defined in
Table II.

The rovibrational spectrum of a diatomic molecule is often
expressed with Dunham’s expansion,

EνJ = h∑
kl

Ykl(ν + 1
2
)

k
[J(J + 1)]l. (2)

The first few Dunham coefficients correspond to well-studied spec-
troscopic constants,

Y10 = ωe, Y20 = −ωexe, Y01 = Be, Y02 = −D̄e, Y11 = −αe. (3)

The following truncation of the expansion is used to describe a
diatomic:

E ≈ U(re) + hωe(ν + 1
2
) + hBeJ(J + 1) − hωexe(ν + 1

2
)

2

− hαe(ν + 1
2
)J(J + 1) − hD̄eJ2(J + 1)2. (4)

TABLE III. Comparison between theory and experiment for bond lengths (Å) and spectroscopic constants (cm−1) of three
diatomic molecules. All Δ terms correspond to the difference between a value and the base CCSD(T)/cc-pCV[Q5]Z calcula-
tion. Experimental values from Ref. 106 (BH), 107 (HF), and 108 (C2). All published experimental uncertainties are smaller
than the displayed precision of the spectroscopic values presented here.

Molecule and method re ωe ωexe Be De αe

BH
Base 1.228 90 2371.24 49.4 12.088 0.001 257 0.423
ΔBasis +0.000 18 −0.44 −0.4 −0.004 −0.000 001 −0.001
ΔDBOC +0.000 65 −2.33 −0.2 −0.013 −0.000 002 +0.000
ΔRel −0.000 01 −0.57 +0.1 +0.000 +0.000 001 +0.000
ΔCCSDTQ +0.000 19 −2.07 +0.1 −0.004 +0.000 001 +0.001
ΔFCI +0.000 00 +0.00 −0.2 +0.000 +0.000 000 +0.000
ΔTotal +0.001 01 −5.41 −0.5 −0.020 +0.000 000 +0.000
Total 1.230 00 2365.83 49.0 12.068 0.001 256 0.423
Experiment 1.232 16 2366.72 49.3 12.026 0.001 235 0.422
HF

Base 0.916 54 4147.01 90.5 20.968 0.002 144 0.793
ΔBasis +0.000 17 −1.79 −0.7 −0.008 −0.000 001 −0.002
ΔDBOC +0.000 01 +0.32 −0.2 −0.001 −0.000 001 +0.000
ΔRel +0.000 06 −3.54 −1.3 −0.003 +0.000 003 +0.000
ΔCCSDTQ +0.000 21 −4.49 +0.1 −0.009 +0.000 002 +0.002
ΔFCI +0.000 01 −0.19 +0.0 +0.000 +0.000 000 +0.000
ΔTotal +0.000 47 −9.70 −2.2 −0.021 +0.000 004 +0.000
Total 0.917 00 4137.31 88.3 20.947 0.002 148 0.792
Experiment 0.916 808 4138.32 89.0 20.956 0.002 151 0.798
C2

Base 1.240 39 1873.63 12.6 1.826 0.000 007 0.017
ΔBasis +0.000 16 −1.01 +0.0 +0.000 +0.000 000 +0.000
ΔDBOC +0.000 01 +0.09 +0.0 +0.000 +0.000 000 +0.000
ΔRel −0.000 16 −0.41 +0.1 +0.000 +0.000 000 +0.000
ΔCCSDTQ +0.001 46 −11.76 +0.8 −0.004 +0.000 000 +0.001
ΔFCI +0.001 00 −4.58 +0.0 −0.003 +0.000 000 +0.000
ΔTotal +0.002 48 −17.81 +0.8 −0.007 +0.000 000 +0.001
Total 1.242 87 1855.82 13.4 1.819 0.000 007 0.018
Experiment 1.242 44 1855.01 13.6 1.820 0.000 007 0.018
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The spectroscopic constants are then describable in terms of the
electronic PES U(r) and its derivatives,

Ie ≡ μr2
e Be ≡ h

8π2Ie
ωe ≡ 1

2π
[U′′(re)

μ
]

1/2
, (5)

ωexe ≡ B2
e r4

e

4hω2
e
[10Ber2

e [U′′′(re)]2
3hω2

e
−U iv(re)], (6)

αe ≡ 2B2
e

ωe
[2Ber3

e U′′′(re)
hω2

e
+ 3] D̄e ≡ 4B3

e

ω2
e

. (7)

Note that these are all “equilibrium” constants, i.e., they are with
respect to the bottom of the potential well (but with inclusion of the
Born–Oppenheimer diagonal correction).

Accessed through the QCDB interface, the PSI4 diatomic pro-
cedure fits a set of points [r, E(r)] to this truncation, solving for
the spectroscopic constants via a least-squares optimization.105 This
procedure was used in the following way for each diatomic:

1. Through the QCDB driver, ETotal was calculated at seven val-
ues of r, spaced 0.005 Å apart and centered approximately at
the minimum of the PES. The spectroscopic constants were
calculated with PSI4, including an approximate re.

2. This seven-point calculation was repeated using the approxi-
mate re from the first step as the central point. The spectro-
scopic constants calculated from these PES points are those
tabulated here.

Basis sets with spherical harmonics were used in all cal-
culations, and basis set coefficients were standardized across all
programs via QCDB. Electrons in core orbitals were frozen for
computations using the cc-pVXZ basis set family, which lack
core correlation functions. Energies were converged to at least
10−10 Hartrees in all programs. Even tighter convergence would
be beneficial for the numerical differentiation performed in the
fitting. Numerical tests suggest that this precision in energy
can lead to uncertainties in αe [proportional to U′′′(re)] and
ωexe [proportional to U iv(re)] as large as 0.0001 and 0.2 cm−1,
respectively.

The calculations of all diatomics and spectroscopic constants
are presented in Table III, and the results for re and ωe are shown
in Fig. 4 for easier analysis. Prior to discussing the chemical and
computational implications of these results, it is worthwhile to first
note that the corrections for BH closely match those of a previ-
ous study103 by Temelso et al. (which used a similar but less exact
extrapolation). This validates these results from a software perspec-
tive: each program must be using correct geometries, basis sets,
convergence criteria, etc. The finite-difference nature of the fitting
procedure makes close agreement between programs particularly
important.

The total extrapolation procedure shows remarkable agreement
with experiment for bond lengths re (within 0.0005 Å) except for
BH, off by 0.0022 Å. However, this extrapolation lacks nonadia-
batic BO effects, which were found by Martin102 to be unusually
high for BH, ∼0.0025 Å. This is rather close to the overall dif-
ference of 0.0022 Å between experiment and our best estimate.

FIG. 4. Influence of post-CCSD(T)/CBS corrections on two spectroscopic con-
stants, (a) re and (b) ωe, and three diatomic systems, BH, HF, and C2. For each
system, the right gray bar is the difference between the experimental constant and
the constant calculated at the EBase [CCSD(T)/CBS] level of theory. The left gray
bar is the difference in constants calculated at the ETotal and EBase levels of the-
ories. Within the left gray bar, contributions from each correction are shown as
colored bars. Data are from Table III.

Theoretical harmonic frequencies ωe are in excellent agreement with
experiment, off by only 1 cm−1. The rotational constant Be is also
well predicted, within 0.01 cm−1 for HF and C2 and off by a some-
what larger 0.04 cm−1 for BH. The latter error may be largely due
to already-noted non-BO effects, which cause a larger discrepancy
in re for BH. ωexe is in good agreement with experiment, match-
ing within 0.2–0.4 cm−1 for BH and C2 but is off by a larger
1.6 cm−1 for HF. It is not clear that the corrections employed here
actually improve this constant, and the remaining discrepancy could
be due to the numerical precision limitations discussed earlier. D̄e
is very well predicted already by the base method, and the various
corrections are extremely small. Similarly, αe appears to not require
corrections on top of the base method, each of which changes it
by only ±0.002 cm−1 or less. Final values are within 0.005 cm−1 of
experiment.

Figure 4 shows that the sum of the small corrections matches
experiment very well for re and ωe, except for the bond length of BH,
where non-BO effects are important as noted above. All of the small
corrections considered can be important for re and ωe, although
there is no consistency about their relative importance from one
molecule to another. For example, the DBOC is rather important
for BH (which has the lightest nuclei), but not for HF and even
less so for C2. Similarly, the FCI correction (beyond CCSDTQ) is
negligible for BH and HF but is important for C2 (worth 0.001 Å
and 4.6 cm−1) In total, the corrections for C2 lower the value of ωe
by a surprisingly large 17.81 cm−1 from the base CCSD(T) value,
which is very close to the experimental ωe (18.61 cm−1 lower than
the base). A large majority of this change is due to missing elec-
tron correlation: the CCSDTQ correction is responsible for about
12 cm−1 and the FCI correction by about another 5 cm−1. This is pre-
sumably due to the much larger degree of electron correlation in C2,
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arising from the close near-degeneracy of the [core]2σ2
g 2σ2

u1π2
x1π2

y

and [core]2σ2
g 1π2

x1π2
y 3σ2

g configurations.

IV. SUMMARY AND CONCLUSIONS
Users increasingly desire programmatic (i.e., API: application

programming interface) access to QC results, either for their con-
venience or for incorporation into automated workflows. The inter-
face, volume, and intricacy requirements of that access vary widely
across applications and increasingly involve uniform results across
QC programs. The QCELEMENTAL, QCENGINE, and QCDB soft-
ware modules [the former two being part of the Molecular Sci-
ences Software Institute18 (MolSSI) QCARCHIVE17 project] pro-
vide a framework to facilitate interoperability among community
computational molecular sciences (CMS) programs.

QCARCHIVE and QCDB have been designed to work with
emerging tools and standards developed by MolSSI, particularly the
QCSCHEMA JSON format for information passing. QCELEMENTAL
provides implementations and validators around QCSCHEMA
objects, while QCENGINE provides QCSCHEMA I/O adaptors for
CMS codes. In addition to wrapping nearly a dozen QC programs for
uniform execution and programmatic access to results, QCENGINE
interfaces with GEOMETRIC and other geometry optimizers that
can, in turn, call QCENGINE for QC gradients. QCENGINE easily
expands to additional CMS codes, has parallel execution capabili-
ties through QCFRACTAL, and by definition allows uniform execu-
tion, yet it is not in itself a coherent QC driver due to the differing
implementations, conventions, defaults, and DSL of QC codes.

The Quantum Chemistry Common Driver and Databases
(QCDB) project provides a simple and powerful driver front-end
to multiple QC programs, allowing users automatic access to sev-
eral features formerly requiring specialized scripts or laborious
post-processing. These include built-in composite methods, many-
body expansion procedures, vibrational analysis, and combinations
thereof for not only energies but also gradients, Hessians, and geom-
etry optimizations. By adding the basis set, keywords, and result
tools for uniformity and interoperability, QCDB also allows mixing
and matching capabilities of multiple quantum chemistry programs
within a single computation. These features have been demon-
strated with an application computing spectroscopic constants of
diatomic molecules at the ab initio limit, including corrections for
post-CCSD(T) electron correlation, beyond-cc-pCV[Q5]Z basis set
effects, relativistic effects, and the Born–Oppenheimer diagonal cor-
rection, combining total energies computed by CFOUR, GAMESS,
NWCHEM, and PSI4.

V. EXTERNAL MATERIAL
Software repositories and documentation are available for

QCELEMENTAL at https://github.com/MolSSI/QCElemental/
and https://molssi.github.io/QCElemental/, for QCENGINE at
https://github.com/MolSSI/QCEngine/ and https://molssi.github.
io/QCEngine/, for QCDB at https://github.com/qcdb/qcdb/
and https://qcdb.github.io/qcdb/, and for general QCARCHIVE
INFRASTRUCTURE at http://docs.qcarchive.molssi.org/. These
programs remain in active development. Production computations
are under way using many features of the software, and test
suites are expected to pass. However, users are encouraged to

contact the developers as they venture afield of the verified tests.
Many snippets from this work, including an abbreviated diatomic
fitting, are demonstrated in the test suite: https://github.com/qcdb/
qcdb/blob/master/qcdb/tests/test_manuscript.py.
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particular case in the text. In Snippet 1, the units bohr string indicates that the
Cartesian coordinates are already in QCSCHEMA’s required atomic units, so these
are unchanged in Snippet 2’s geometry field. The Snippet 1 strings O, H, and
Ne specify the elements and are processed into Snippet 2 fields atomic_numbers
and symbols. The prefix character @ to neon in Snippet 1 indicates it’s a ghost
atom, so the Snippet 2 field real shows a T, T, F pattern. Gh(22Ne) would have
been equivalent to the given @22Ne. The prefix string 22 to neon in Snippet 1
specifies the mass number, much like a nuclide symbol. Thus the Snippet 2
fields mass_numbers and masses use default values for the oxygen and hydrogen
but 22Ne values for neon. @Ne@21.99138511 to specify the mass value would
have been equivalent. The strings no_com and no_reorient were not given in
Snippet 1, so the fields fix_com and fix_orientation in Snippet 2 are F,
meaning that the origin and frame of geometry are incidental to the Molecule
specification. A user label like O1 or O_bigbasis is parsed, but since Snippet
1 doesn’t include any, the atom_labels field of Snippet 2 are empty strings.
The--line of Snippet 1 indicates there are two fragments in the molecule,
the first with two atoms and the second with one. This is encoded in the
fragments field of Snippet 2. No charge/multiplicity lines are present in Snip-
pet 1, either overall or per-fragment, so defaults are assigned. The second frag-
ment is all ghosts and so is a neutral singlet. Electrons are never added or
removed to the specification, so the first fragment is assigned neutral dou-
blet, and the overall molecule is a neutral doublet. These defaults are reflected
in the Snippet 2 fields molecular_charge, molecular_multiplicity,
fragment_charges, and fragment_multiplicities. The string parser also
stamps the schema name and provenance information in Snippet 2.
98In full, the command requests a Dunning 5ζ to 6ζ Helgaker-formula extrapola-
tion of the MP2 correlation gradient performed by PSI4 with a coupled-cluster sin-
gles and doubles excitations correction (CCSD−MP2) at the Dunning triple-ζ to
quadruple-ζ Helgaker-formula extrapolation gradient performed by NWCHEM
with a CC up to quadruples excitations at cc-pVDZ performed by CFOUR, all
atop an implicit 6-ζ Hartree–Fock.
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