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ABSTRACT
The many-body expansion (MBE) is promising for the efficient, parallel computation of lattice energies in organic crystals. Very high accuracy
should be achievable by employing coupled-cluster singles, doubles, and perturbative triples at the complete basis set limit [CCSD(T)/CBS]
for the dimers, trimers, and potentially tetramers resulting from the MBE, but such a brute-force approach seems impractical for crystals of
all but the smallest molecules. Here, we investigate hybrid or multi-level approaches that employ CCSD(T)/CBS only for the closest dimers
and trimers and utilize much faster methods like Møller–Plesset perturbation theory (MP2) for more distant dimers and trimers. For trimers,
MP2 is supplemented with the Axilrod–Teller–Muto (ATM) model of three-body dispersion. MP2(+ATM) is shown to be a very effective
replacement for CCSD(T)/CBS for all but the closest dimers and trimers. A limited investigation of tetramers using CCSD(T)/CBS suggests
that the four-body contribution is entirely negligible. The large set of CCSD(T)/CBS dimer and trimer data should be valuable in benchmark-
ing approximate methods for molecular crystals and allows us to see that a literature estimate of the core-valence contribution of the closest
dimers to the lattice energy using just MP2 was overbinding by 0.5 kJ mol−1, and an estimate of the three-body contribution from the closest
trimers using the T0 approximation in local CCSD(T) was underbinding by 0.7 kJ mol−1. Our CCSD(T)/CBS best estimate of the 0 K lattice
energy is −54.01 kJ mol−1, compared to an estimated experimental value of −55.3 ± 2.2 kJ mol−1.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0159410

I. INTRODUCTION

In 2006, Schweizer and Dunitz1 computed the lattice energy
of crystalline benzene using a many-body expansion (MBE).2,3 In
this approach, one accumulates the lattice energy as a sum of con-
tributions from dimers, trimers, tetramers, etc. within the crystal.
Schweizer and Dunitz stopped at the level of dimers, which neglects
non-pairwise-additive contributions like higher-order polarization
and three-body dispersion. Nevertheless, because benzene lacks a
permanent dipole with which to polarize other monomers, one
would have expected such higher-order effects to be minor. Disap-
pointingly, Schweizer and Dunitz obtained a very poor agreement

with the experiment. They employed second-order Møller–Plesset
Perturbation Theory (MP2) and observed that “MP2 calculations
give more than double the correct value and are clearly not very
useful. The counterpoise-corrected values yield erratic values for
the lattice energy, and it is not obvious how any larger basis set
or improved BSSE (basis set superposition error) correction would
influence the result.” This led them to conclude that “the goal of
calculating an unconditionally reliable ab initio value for the lattice
energy of benzene may still seem remote, but it is on the horizon and
should be attainable.”

As demonstrated by Ringer and Sherrill in 2008,4 the main
problem was not with the MBE or with neglecting many-body
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contributions but with stopping at the MP2 level. Although this
approach is considered by some to be an “accurate” quantum
chemistry method, it can strongly overestimate intermolecular π–π
interactions.5–7 However, using the “gold standard” of quantum
chemistry, coupled-cluster through perturbative triple excitations
[CCSD(T)],8 and estimating results at the complete-basis-set (CBS)
limit, yielded results apparently within “chemical accuracy” (±1 kcal
mol−1).4 Later, several studies indicated that the three-body effects
were significant (e.g., 14% of the lattice energy).9–11 In 2014,
CCSD(T)/CBS estimates for a large number of trimers from the crys-
tal indicated that the total three-body effect is closer to half of this
value,12 which nevertheless remains significant for high-accuracy
estimates. In this same year, Chan and co-workers reported a tour
de force study of crystalline benzene aimed at determining the lat-
tice energy within 1 kJ mol−1 accuracy.13 That study, including
partial accounting for beyond-trimer contributions, four-electron
contributions, and other small corrections, demonstrated convinc-
ingly that the many-body expansion is entirely capable of providing
very-high-accuracy results, at least for some molecular solids. Other
studies since 2008 have also demonstrated the reliability of the MBE
for computations of molecular crystals.14–20

These examples suggest that the MBE, coupled with ab initio
quantum chemistry methods, can compute lattice energies very
accurately, more accurately than is currently possible with stan-
dard force-field methods or density functional theory methods.
High-accuracy computations of lattice energies would be very ben-
eficial in energetically ranking polymorphs, which are often very
close in energy. The high computational cost of the most accurate
approaches, like CCSD(T)/CBS, is mitigated by the fact that the indi-
vidual N-mer computations in the MBE are totally independent and
thus can be run in a parallel fashion. Nevertheless, remaining obsta-
cles to the routine application of a CCSD(T)/CBS MBE have been (a)
the lack of commonly available software to automate the construc-
tion and running of the individual N-mer computations and their
reconstruction into a crystal lattice energy, and (b) thorough bench-
mark studies demonstrating when CCSD(T)/CBS is truly necessary
and when lower levels of theory may be substituted for computa-
tional efficiency. To help address obstacle (a), we recently introduced
CrystaLattE,21 an open-source program that takes a crystal structure
in crystallographic information file (CIF), automatically creates a
series of non-symmetry-redundant N-mers and associated quantum
chemistry input files for PSI4,22 and processes the results into the
lattice energy. The present work is aimed at gaining a better under-
standing of issue (b), initially for the test case of crystalline benzene.
Our expectation based on prior work (e.g., Refs. 7 and 12) is that,
at long range, approximations to CCSD(T)/CBS using smaller basis
sets and/or less complete electron correlation models should allow
much faster computations at only a modest reduction in accuracy.
Therefore, we imagine a “multi-layer” approach in which expensive
CCSD(T)/CBS or other high-accuracy computations are performed
on only a handful of the most important dimers and trimers, and
faster methods are used for the remainder.

Here, we obtain CCSD(T)/CBS results for symmetry-unique
dimers, trimers, and even a few tetramers within crystalline ben-
zene, up to large cutoff distances (for a total of 420 dimers, 1977
trimers, and 24 tetramers). This dramatically expands upon our 2014
study of trimers, which involved only 366 (symmetry-redundant)
trimers and only used the aug-cc-pVDZ basis set. It also improves

upon the CCSD(T) approach utilized by Chan and co-workers,13

which involved local correlation approximations whose effects on
interaction energies have not been completely characterized. For
dimers, we have also assessed the effect of the core-valence corre-
lation. These CCSD(T)/CBS dimer and trimer benchmark results
should be valuable for testing more approximate methods for non-
covalent interactions and lattice energy computations. Compared to
these benchmark results, we assess the reliability of CCSD(T)/CBS
estimates obtained using smaller basis sets, the MP2 method, and
Axilrod–Teller–Muto (ATM)23,24 estimates of three-body disper-
sion. Our results indicate that core-valence contributions have a
minor effect and are only important at very short ranges, that smaller
basis sets remain effective for computing CCSD(T)/CBS estimates
beyond very short ranges, and that MP2 and/or ATM can be effective
approximations at long ranges, saving a huge fraction of the compu-
tational time. Computations on tetramers indicate that four-body
effects make a negligible contribution (0.1 kJ mol−1 or less).

II. THEORY
In the MBE,2,3 the total energy of a molecular cluster is given as

E =
N

∑
I

EI +
N

∑
I<J

ΔE(2)IJ +
N

∑
I<J<K

ΔE(3)IJK +
N

∑
I<J<K<L

ΔE(4)IJKL + ⋅ ⋅ ⋅ . (1)

Here, N is the number of monomers in the cluster, EI is the energy of
monomer I, and ΔEIJ(2) is the interaction energy of the dimer formed
by monomers I and J,

ΔE(2)IJ = EIJ − EI − EJ , (2)

ΔEIJK is the non-additive three-body energy of the trimer formed by
monomers I, J, and K,

ΔE(3)IJK = EIJK − EI − EJ − EK − ΔE(2)IJ − ΔE(2)IK − ΔE(2)JK , (3)

and ΔE(4)IJKL is the non-additive four-body energy of the tetramer
formed by monomers I, J, K, and L, which is likewise computed by
subtracting all monomer energies and all dimer and non-additive
trimer interaction energies from EIJKL.

Equation (1) is exact when terms up to the non-additive
N-body contribution for a cluster of N molecules are included.
Truncating at a lower order, typically at the level of two- or three-
body interactions, provides an efficient way to approximate the total
energy at a substantially reduced computational cost.

The lattice energy of a crystal is defined as the energy required
to construct the lattice starting from a state where all its molecules
are infinitely separated. In this study, geometries are extracted from
an experimentally-determined crystalline structure. The monomer
geometries are assumed to be rigid, and any monomer deformation
terms are, therefore, neglected. This should be a good approximation
for a rigid molecule like benzene. Hence, the lattice energy is the sum
of the N-body interaction energies, ΔE(2)IJ , ΔE(3)IJK , etc., up through
the chosen truncation level. However, if the crystal is modeled as an
infinitely extended solid, then there are an infinite number of dimers,
trimers, etc. Therefore, the lattice energy is computed per monomer,
or per mole of monomers, to obtain a finite result. For this purpose,
a reference monomer is picked, and that monomer will appear in all
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N-mers of the MBE. Then all dimers, trimers, etc. that satisfy various
filtering criteria are selected.

For each N-mer retained, its N-body interaction energy is com-
puted. This energy is divided by N, the number of monomers in the
N-mer, to obtain the contribution per monomer. Each symmetry-
unique N-mer needs to be computed only once, and its energy
per monomer should be multiplied by the number of symmetry-
equivalent N-mers that contain the same reference monomer. The
contribution, CN−mer, of each N-mer to the crystal lattice energy is
thus computed as

CN−mer = RN−mer × ΔE(N)I...N
N

, (4)

where N is the number of monomers and RN−mer is the number
of replicas of each unique N-mer. For dimers, ΔE(N)I...N is the dimer
interaction energy, as defined in Eq. (2); for trimers and higher-
order N-mers, ΔE(N)I...N corresponds to the non-additive portion of
the many-body energy, e.g., as defined for a trimer in Eq. (3).

III. COMPUTATIONAL DETAILS AND METHODS
The computational procedure was split into two parts. First,

a set of symmetry-unique dimer, trimer, and tetramer configura-
tions was extracted from a model of crystalline benzene using the
CrystaLattE code.21 Then, computations were performed using the
PSI4 electronic structure program.25 These computations were dis-
tributed and run in parallel among available resources on the clus-
ters of the Partnership for an Advanced Computing Environment
(PACE) at the Georgia Institute of Technology.

A. CrystaLattE setup
An experimentally-determined structure of crystalline benzene

at 138 K that has been used in previous computational studies by
our group and others4,12,13,21,26–28 was obtained in CIF format from
the Cambridge Structural Database (CSD). The structure corre-
sponds to CSD code BENZEN01, and it is the same employed in our
demonstration application of CrystaLattE.21

CrystaLattE generates a supercell by replicating the unit cell
described by the CIF file. It then selects dimers, trimers, etc., each
containing the “reference monomer” and satisfying the appropriate
N-mer cutoff . The N-mer cutoff computes the closest atom–atom
distance between each pair of monomers and then ensures that the
longest of these is shorter than a given cutoff distance. The user
can specify different cutoffs for different N-mer orders, i.e., different
dimer, trimer, and tetramer cutoffs. For this work, we updated Crys-
taLattE to automatically compute the size of the supercell required
to achieve the requested N-mer cutoffs. A threshold of 1.2 times
the sum of the van der Waals radii was employed to automatically
detect monomers in the supercell through the breadth-first search
algorithm.

Here, we employed a dimer cutoff distance of 30 Å, although
the very highest levels of theory considered here were only employed
out to 8 Å (at this distance, slightly more approximate high-level
methods performed very well and were utilized as benchmarks for
the remaining dimers, as described below). A trimer cutoff distance
of 15 Å and a tetramer cutoff distance of 10 Å were employed to
keep the number of three- and four-body interactions computed
manageable. The symmetry-uniqueness of the configurations was

determined using a chemical-space descriptor.21 420 dimer, 1977
trimer, and 1332 tetramer configurations were generated using these
cutoffs. The MBE was truncated at the level of tetramers.

B. PSI4 setup
All calculations were executed using PSI4 1.2.1,25 except in

cases where core-valence correlation corrections were required.
Those calculations were run with a nightly-build, development ver-
sion, 1.4a2.dev313.22 Calculations were executed with two methods:
(1) coupled cluster with single and double excitations and per-
turbative triple excitations, or CCSD(T),8 and (2) second-order
Møller–Plesset perturbation theory, or MP2. The self-consistent
field (SCF) procedure and the correlation energies were computed
using the density-fitting approximation for both CCSD(T) and MP2
calculations.22,29–31 Core orbitals were constrained to remain doubly
occupied except in computations meant to assess core-valence corre-
lation, which were performed with core-valence basis sets. The Boys
and Bernardi counterpoise correction (CP)32,33 for basis set superpo-
sition error treatment was used in all the calculations. For example,
when computing three-body contributions for a trimer, the energies
of the constituent monomers and dimers were obtained using the
basis functions of all three monomers.

The frozen natural orbital (FNO) approximation, with the
default occupation number cutoff of 10−6 electrons, was employed
in CCSD(T) calculations of dimers.31 In our initial trimer com-
putations, we noticed some very small errors in the non-additive
three-body interaction energies due to the FNO approximation,
which appeared to be at least partially systematic; that is, the errors
tended to have the same sign and thus could accumulate when
summing large numbers of trimer contributions. Therefore, we re-
generated the trimer CCSD(T)/CBS data without the use of the FNO
approximation. With the default FNO cutoff of 10−6 electrons, the
total CCSD(T)/CBS three-body contribution to the lattice energy
was underestimated by 0.24 kJ mol−1 vs results without the FNO
approximation.

1. Two-body interactions
MP2 and CCSD(T) calculations were performed to analyze how

the total two-body contribution to the crystal lattice energy depends
upon the choice of method, basis set (or basis set extrapolation), and
core-valence correlation effects. MP2 calculations were performed
using the aug-cc-pVDZ basis set, dubbed aDZ for brevity, and the
aug-cc-pVTZ basis, labeled aTZ.

CCSD(T) calculations employed a focal-point scheme to
extrapolate the results to the complete basis set (CBS),34,35 which
works well for noncovalent interactions when using correlation-
consistent basis sets.6,36–38 Smaller basis sets often capture higher-
order electron correlation effects well. Therefore, CCSD(T) in a large
basis set may be approximated by

E(CCSD(T)/Large) ≈ E(MP2/Large) + δCCSD(T)
MP2 /Small, (5)

where large and small refer to the relative size of the basis set and the
difference, or δ, term is defined as

δCCSD(T)
MP2 /Small = E(CCSD(T)/Small) − E(MP2/Small). (6)

The large basis in Eq. (5) can be substituted by an esti-
mate of the CBS limit, and it has been shown that a two-point
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extrapolation of the correlation energy is usually sufficient for
this purpose.39 Following the focal-point approach, in this study,
a DF-FNO-CCSD(T)/aug-cc-pVXZ computation was accompanied
by a two-point CBS extrapolation of the DF-MP2 correlation
energy using aug-cc-pV(X+1)Z and aug-cc-pV(X+2)Z basis sets.
The Hartree–Fock reference contribution to the focal-point energy
is taken as the Hartree–Fock energy in the largest basis set con-
sidered, i.e., aug-cc-pV(X+2)Z. To analyze the impact of the basis
set, we generated CCSD(T)/CBS focal-point estimates using both
double-zeta (X = 2) and triple-zeta (X = 3) basis sets for the coupled-
cluster part of the estimate. To analyze core-valence correlation
effects, we performed analogous focal-point CCSD(T)/CBS proce-
dures using Dunning’s weighted core-valence (cc-pwCVXZ) basis
sets for both the CCSD(T) and MP2 computations, with unfreezing
of the core electrons.

To make the text more readable, we will use a short-
hand notation for the focal-point procedures. For example,
the method dubbed CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) indicates
a focal-point computation estimating the CCSD(T)/CBS limit
according to Eqs. (5) and (6), using DF-FNO-CCSD(T)/aug-
cc-pwCVTZ together with an estimate of the MP2/CBS limit
based on DF-MP2/aug-cc-pwCVQZ and DF-MP2/aug-cc-pwCV5Z
calculations.

For two-body computations, we utilized an energy convergence
criterion of 10−10 a.u. except for focal-point computations at higher
levels of theory than CCSD(T)/CBS(a[TQ]Z; δ:aDZ), where a cutoff
of 10−9 a.u. was used.

We expect our highest level of theory used here,
CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ), to be very accurate and a
suitable high-level reference for two-body interactions. The only
potentially significant effect that it omits is correlated motion
between four electrons simultaneously, modeled by quadruple exci-
tations in the coupled-cluster ansatz. Unfortunately, coupled-cluster
through quadruple excitations, CCSDTQ, is extremely expensive
computationally, and perturbative approximations to it remain
very expensive. Moreover, as shown by Smith and Patkowski,40

small double-ζ basis sets do not seem sufficient to accurately
estimate the effect of quadruple excitations on intermolecular
interactions. Chan and co-workers13 attempted to estimate the
effect of quadruple excitations on the two-body energy using a
perturbative estimate of quadruples, i.e., the CCSDT(Q) model.
Unfortunately, due to computational expense, they were forced
to use the very small 6-31G basis set and freeze 56 electrons in
the computation (there are only 24 core electrons in the benzene
dimer). They then attempted to correct for these approximations
by a simple scaling of the quadruples contribution by the ratio of
the (T) contribution in a large basis set with 24 frozen electrons vs
the (T) correction in the 6-31G basis with 56 frozen electrons. This
procedure (actually an average of two similar procedures) yields
an estimate of +0.36 kJ mol−1 for the two-body contribution of
quadruples. Due to the significant approximations employed, we
consider this estimate to carry substantial uncertainty, but we are
unable to perform more accurate estimates of the quadruple effects
here due to computational expense. Nevertheless, we are reassured
that the quadruples effect appears to be quite small, and smaller
than some of the other effects that we explore here.

2. Three-body interactions
To analyze how the total three-body contribution to the

computed crystal lattice energy depends upon the choice
of method and basis set size, MP2/aDZ, MP2/aTZ, and
CCSD(T)/CBS(a[TQ]Z;δ:aDZ) computations were performed
on trimers up to a trimer cutoff of 15 Å, yielding 1977 symmetry-
unique trimers. In addition, MP2 results were subject to the
addition of an undamped molecular Axilrod–Teller–Muto (ATM)
correction23,24 to approximate the three-body dispersion missing
in MP2. This correction is computed using a molecular ATM
constant of 82 657.65 a.u. taken from previous estimations using
Density Functional Theory-based Symmetry-Adapted Perturbation
Theory [SAPT(DFT)].9 For trimer computations, we utilized an
energy convergence criterion of 10−10 a.u. For the four closest
trimers only, we performed higher-level CCSD(T)/CBS(a[Q5]Z;
δ:aTZ) computations. These used the FNO approximation (with a
cutoff 10−8 electrons for weakly occupied NO’s, or 100 times tighter
than the normal conservative cutoff) and an energy convergence
criterion of 10−8 a.u.

3. Four-body interactions
We analyzed the four-body contribution to the lattice energy

by performing MP2/aDZ and MP2/aTZ computations on 1332
tetramers. These computations should suffice to capture any four-
body induction/polarization or exchange-repulsion effects that
might be important. In addition, 24 CCSD(T)/CBS(a[TQ]Z; δ:aDZ)
tetramer computations were performed to analyze individual four-
body contributions to the computed crystal lattice energy and
their dependence upon the choice of method and basis set size.
For these tetramer calculations, the energy convergence criterion
was 10−10 a.u.

C. Numerical precision
As previously pointed out by Richard, Lao, and Herbert,41

one must be careful in applications of the many-body expansion
because the addition of large numbers of energies can cause numer-
ical precision problems in the final result if care is not taken. The
electronic energy for each monomer, dimer, etc., is converged to
some cutoff value, ε(N)Conv, where the superscript (N) indicates that
we might choose the cutoff value differently when computing two-
body, three-body, or four-body contributions. The cutoff value on
the convergence of the energy means that the energy will have an
uncertainty of approximately ε(N)Conv. In our tests, the errors caused
by these cutoff values (vs much more tightly converged values)
appear to be random rather than systematic. Therefore, the uncer-
tainty in the sums and differences of these energies will just be
the square root of the sum of the squares of the individual uncer-
tainties. For a dimer interaction energy, ΔE(2)IJ = EIJ − EI − EJ , the

uncertainty in the final result is just
√

σ(EIJ)2 + σ(EI)2 + σ(EJ)2.
If all energies are computed with the same two-body convergence
criterion ε(2)Conv, this simplifies to ε(2)Conv

√
3. Because the contribution

of this dimer’s interaction energy to the overall two-body lattice
energy is (RIJΔE(2)IJ )/2 according to Eq. (4), the uncertainty in this
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contribution is ε(2)ConvRIJ
√

3/2. In general, an individual N-mer’s
contribution to the overall non-additive N-body contribution to

the lattice energy is ε(N)ConvRN−mer

√
n(N)/N, where n(N) is the num-

ber of component energies required to compute the non-additive
N-body contribution of that N-mer (3 for a dimer, 7 for a
trimer, and 15 for a tetramer). When the focal-point approxima-
tion is used, additional energy computations are involved [e.g., each
CCSD(T)/CBS(a[TQ]Z; δ:aDZ) single-point energy requires three
MP2 energies and one CCSD(T) energy]. If we introduce the multi-
plier λ(N) to account for any such additional energy computations
(here, it is 1 for MP2 and 4 for all focal-point procedures con-
sidered), the uncertainty in an N-mer’s lattice energy contribution

becomes ε(N)ConvRN−mer

√
λ(N)n(N)/N.

We wish the uncertainty in the overall N-body contribution to
the lattice energy, which is just a simple sum of the energy con-
tributions from each individual N-mer. Each N-mer may have a
different number of replicas RN−mer. However, we are concerned
here with order-of-magnitude estimates of the uncertainty, so we
may replace this factor with the average number of replicas, which is
just M (N)

Redundant/M (N)
Unique, where M (N)

Redundant/Unique is the number of
redundant or symmetry-unique N-mers in the computation. Doing
this allows us to estimate the overall uncertainty for the N-body
contribution as

σ(ΔE(N)) = ε(N)Conv

⎡⎢⎢⎢⎢⎣
M (N)

Redundant

M (N)
Unique

⎤⎥⎥⎥⎥⎦

√
λ(N) n(N)M (N)

Unique

N
. (7)

Using the PSI4 convergence criteria noted earlier (nearly all
energies converged to 10−10 a.u.) and the number of N-mers consid-
ered, we estimate that all of our N-body contributions to the lattice
energy have a numerical uncertainty of under 0.001 kJ mol−1 due to
the addition of large numbers of individual contributions.

D. Hardware details
Computations were performed on the Hive and Phoenix clus-

ters at Georgia Tech, utilizing nodes with dual Intel Xeon processors
(for Hive, E5-2640 v4 processors with ten cores each, and for
Phoenix, Xeon Gold 6226 processors with 12 cores each). Compu-
tations utilized locally attached scratch disks (either a RAID0 array
of hard disk drives or NVMe storage). Nodes contained 256 GB
of RAM (Hive) or 192 GB of RAM (Phoenix). On Hive, five MP2
jobs would usually be accommodated simultaneously on each of the
nodes by using four cores for each calculation. For CCSD(T) cal-
culations, given the higher memory and scratch demand, only two
10 or 12 core jobs, at most, could be executed on each node. When
utilizing Hive, we were often able to utilize as many as 800 cores
simultaneously.

IV. RESULTS AND DISCUSSION
In this section, we first explore the computational cost of con-

ducting this benchmark study. Then, we present the results for two-,
three-, and four-body interactions. We focus on the convergence
of the MBE, how the methods, basis sets, and cutoffs affect the
accuracy of the calculated crystal lattice energy, and on a proposed

multi-level scheme to achieve maximum efficiency in computing
highly accurate lattice energies.

A. Timings
Table I summarizes the average computational cost (in core

hours) of computing one N-mer with the various ab initio meth-
ods employed in this study. As mentioned earlier, we used different
numbers of cores for CCSD(T) vs MP2 computations.

For MP2, increasing basis set size from double-to triple-
zeta quadruples the average cost of calculating a dimer or a
trimer and causes a six-fold increase in cost for a tetramer.
For focal-point coupled-cluster (CC) methods, increasing the
size of the basis set is extremely expensive. On average,
the cost increases more than 18-fold when switching from
CCSD(T)/CBS(a[TQ]Z; δ:aDZ) to CCSD(T)/CBS(a[Q5]Z; δ:aTZ)
and about 20-fold when going from CCSD(T)/CBS(aC[TQ]Z;
δ:aCDZ) to CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) for benzene dimer.
This result is not surprising given the steep O(o3v4) scaling of the
CCSD(T) portion of the focal-point procedure, but quantifying the
computational cost increases is helpful in assessing cost/accuracy
tradeoffs.

Incorporating core-valence correlation effects more than triples
the average cost of focal-point CCSD(T)/CBS computation on a
benzene dimer. The cost increase in this case is due to the extra
determinants generated when unfreezing the core electrons and also
due to the introduction of the weighted core-valence (cc-pwCVXZ)
basis sets, which are larger than standard valence basis sets.

The time required to compute a trimer using the
CCSD(T)/CBS(a[TQ]Z; δ:aDZ) approach is comparable to the
time required to compute a dimer using a similar approach but with
increased basis sets, CCSD(T)/CBS(a[Q5]Z; δ:aTZ). There are many
more trimers to be computed than dimers, so the computational
cost per N-mer becomes a much more serious concern for trimers
(or tetramers).

Table II shows the average computational cost of running
a whole N-mer set with the various levels of theory and cutoffs
employed here. The times reported assume that jobs can be dis-
tributed simultaneously on 800 cores, as was routinely achievable
for us on a campus cluster. In considering Table II, it is important
to recall that we used quite large cutoffs so that we could carefully

TABLE I. Comparison of the computational cost, in core-hours, of calculating one
N-mer with the different methods employed in this study.

Level of theory

Cost [core hours]a

2-mer 3-mer 4-mer

CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) 1245.83 N/A N/A
CCSD(T)/CBS(a[Q5]Z; δ:aTZ) 347.64 N/A N/A
CCSD(T)/CBS(aC[TQ]Z; δ:aCDZ) 60.99 N/A N/A
CCSD(T)/CBS(a[TQ]Z; δ:aDZ) 18.68 612.37b 2155.54
MP2/aTZ 0.36 2.25 25.67
MP2/aDZ 0.09 0.55 4.49
aOn the Hive cluster, except where otherwise noted. Nodes were running multiple jobs
simultaneously (see text).
bOn the Phoenix cluster and without the benefit of FNO approximations.
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TABLE II. Comparison of the estimated effective computational cost, in wall time
hours when utilizing 800 cores simultaneously, of calculating a set of N-mers with
the different methods and cutoffs employed in this benchmark study.

Level of theory

Effective walltime (h)

2-mers 3-mers 4-mers

CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) 747.5 N/A N/A
CCSD(T)/CBS(a[Q5]Z; δ:aTZ) 208.6 N/A N/A
CCSD(T)/CBS(aC[TQ]Z; δ:aCDZ) 36.6 N/A N/A
CCSD(T)/CBS(a[TQ]Z; δ:aDZ) 11.2 1530.9 3664.4
MP2/aTZ 0.3 5.6 44.9
MP2/aDZ 0.1 1.4 7.9
N-mer cutoff (Å) 20 15 10
Set size 420 1977 1332

examine convergence with respect to cutoff distance. Additionally,
as we will discuss below, CCSD(T)-accuracy computations are only
necessary for close N-mers, allowing for a dramatic reduction in
computation time compared to the brute force timings reported in
Table II.

Table II clearly demonstrates that CCSD(T) is too computa-
tionally costly for routine use in computing three-body (or higher)
contributions to the lattice energies of molecular crystals if the
molecule is as large as benzene or larger. More computationally effi-
cient methods need to be explored for trimers and tetramers (we
explore this question below). On the other hand, the two-body terms
should dominate the lattice energy, and one sees that the full set of
dimers is attainable at the rather accurate CCSD(T)/CBS(a[TQ]Z;
δ:aDZ) level of theory within half a day. MP2 computations are dra-
matically faster than the CCSD(T)/CBS estimates, and the full set of
dimers can be obtained using MP2/aTZ or MP2/aDZ in only a few
minutes. The speedups of MP2 over CCSD(T) are even more dra-
matic for the trimers. This motivates us to explore the accuracy of
MP2 and MP2-based approaches below.

B. Two-body interactions
We now turn to the energy analysis of the two-body inter-

actions. Figure 1 shows how the total two-body contribution to
the lattice energy accumulates when adding a growing number
of dimer configurations. Contributions are summed in increasing
order according to the closest contact distance between monomers
in each dimer, the dimer cutoff . To facilitate the analysis, the
data in Fig. 1 have been split into three domains with respect
to the dimer cutoff: the short- (<4 Å), mid- (4–8 Å), and long-
range (>8 Å). The shaded area, delimiting the mid-range domain,
helps distinguish these three regions. Table III presents the accu-
mulated lattice energy contribution for each method and distance
domain and further distinguishes between long-range (8–20 Å) and
very-long-range (20–30 Å). The highest level of theory considered
here for dimers is CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ), i.e., a focal-
point approach using a Hartree–Fock/aug-cc-pwCV5Z reference
energy, a two-point extrapolation of the MP2 correlation energy
using the aug-cc-pwCVQZ and aug-cc-pwC5Z basis sets, and a
coupled-cluster correction computed as CCSD(T)/aug-cc-pwCVTZ
- MP2/aug-cc-pwCVTZ. These computations include core-valence

FIG. 1. Accumulation of two-body contributions to the lattice energy as a func-
tion of the closest contact distance between monomers. The mid-range region
(4–8 Å) is shaded. The first three dimers, whose monomers are separated by less
than 2.7 Å, account for most of the total two-body contribution. Reference values
are CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) for ≤8 Å and CCSD(T)/CBS(a[TQ]Z; δ:aDZ)
for >8 Å (see text). All curves become nearly identical (but shift) in the mid and
long ranges, indicating that differences arise mainly from short- or early mid-range
contacts.

electron correlation. This time-consuming method is used for R ≤ 8.
In tests of the range 8 < R ≤ 14, we found that the faster (valence-
only) focal-point approach CCSD(T)/CBS(a[TQ]Z; δ:aDZ) agrees
within 0.01 kJ mol−1 of our best results for the accumulated lattice
energy contribution, and so that method is adopted as the reference
method for 8 < R ≤ 30 Å.

The two-body component of the lattice energy converges
rapidly with distance, showing a quasi-exponential decay, regardless
of the level of theory. The individual dimer interaction energies in
the long-range domain basically agree, with a few exceptions, across
different levels of theory. Figure 1 and Table III demonstrate a stark
contrast between the proportion of the total two-body contribution
originating from each distance domain. The short-range set, which
includes the three coordination-shell dimers, accounts for about
86% of the total reference two-body contribution; the intermediate-
range, including 14 dimers, accounts for about 12%; the long-range,
which includes 125 dimers, accounts for 2%; and finally, the 278
dimers in our very-long-range bin account for only 0.2% of the total
two-body contribution. This suggests that higher levels of theory
only need to be applied to the closer dimers, an idea we return to
below.

As shown in Table III, among the four CCSD(T)/CBS methods
considered, the largest difference among the summed contributions
of the three closest trimers is 0.78 kJ mol−1. A variation of this
size means that the choice of CCSD(T)/CBS estimation scheme
matters, at least for the closest dimers, if ∼1 kJ mol−1 accuracy is
desired for the total lattice energy. However, in the medium range,
the CCSD(T)/CBS estimates differ by at most 0.06 kJ mol−1 for
the lattice energy contribution, and we noted earlier the essentially
exact agreement between CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) and
CCSD(T)/CBS(a[TQ]Z; δ:aDZ) in the range 8 < R ≤ 14 Å. Figure 2
further illustrates these points, displaying errors in the dimer contri-
butions to the lattice energy [Eq. (4)] vs the highest level of theory
considered here, CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ), for increasingly
distant dimers across different levels of theory. Errors for the other
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TABLE III. Summary of total two-body lattice energy contributions, split by separation domain, for each method employed
in this study. All energies are in kJ mol−1. Cutoff distances are expressed in Å. The highest level of theory used here,
CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ), is used as the reference value for assessing more approximate methods in the range
R ≤ 8. In the range 8 < R ≤ 14, CCSD(T)/CBS(a[TQ]Z; δ:aDZ) matches the reference method within 0.01 kJ mol−1 for the
total lattice energy contribution and is, therefore, adopted as the new reference method for 8 < R ≤ 30. Percentages reflect
the contribution to the overall two-body energy computed at the corresponding level of theory. Energy differences with respect
to the best reference values for each range are indicated in parentheses.

Total Short Medium Long V. Long
Range R ≤ 30 R ≤ 4 4 <R ≤ 8 8 <R ≤ 20 20 <R ≤ 30

CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) −49.75 −6.64
Ref. Ref.

CCSD(T)/CBS(a[Q5]Z; δ:aTZ) −49.66 −6.65
(0.08) (−0.01)

CCSD(T)/CBS(aC[TQ]Z; δ:aCDZ) −50.44 −6.70
(−0.69) (−0.06)

CCSD(T)/CBS(a[TQ]Z; δ:aDZ)
−57.99 −50.16 −6.67 −1.05 −0.11

100.00% 86.5% 11.5% 1.8% 0.2%
(−0.44) (−0.41) (−0.03) Ref. Ref.

CCSD(T)/CBS Ref.
−57.55 −49.75 −6.64 −1.05 −0.11

100.00% 86.4% 11.5% 1.8% 0.2%
Ref. Ref. Ref. Ref. Ref.

MP2/aTZ
−68.91 −59.22 −8.14 −1.40 −0.14
100.0% 85.9% 11.8% 2.0% 0.2%

(−11.36) (−9.47) (−1.50) (−0.35) (−0.03)

MP2/aDZ
−64.53 −54.76 −8.10 −1.46 −0.21
100.0% 84.9% 12.6% 2.3% 0.3%
(−6.98) (−5.01) (−1.46) (−0.41) (−0.10)

Number of dimers 420 3 14 125 278
100.0% 0.7% 3.3% 29.8% 66.2%

approximate CCSD(T)/CBS methods are only discernible for the
first three dimers. Therefore, we see that basis set effects beyond
CCSD(T)/CBS(a[TQ]Z; δaDZ) and core-valence effect are relevant
for the first three dimers only. Errors in MP2 persist somewhat longer
but also decrease rapidly with increasing dimer separations.

As seen in Table III, for the three closest dimers, the
CCSD(T)/CBS(a[TQ]Z; δ:aDZ) summed lattice energy contribution
is −50.16 kJ mol−1. If we increase the size of the basis set used
for both the MP2 and the CCSD(T) portions of the focal-point
approach to obtain CCSD(T)/CBS(a[Q5]Z; δ:aTZ), the lattice energy
is reduced in magnitude to −49.66 (a basis set correction of +0.50 kJ
mol−1). If, instead, we include core-valence correlation by unfreez-
ing the core electrons and moving to the core-valence basis sets,
this yields the CCSD(T)/CBS(aC[TQ]Z; δ:aCDZ) approach, with a
short-range lattice energy contribution of −50.44 kJ mol−1 or a core-
valence correction of −0.28 kJ mol−1 when compared to the base-
line CCSD(T)/CBS(a[TQ]Z; δ:aDZ) method. Frequently, quantum
chemists add separate corrections for valence basis set extensions
and for core-valence effects. If we used such an approach here, we
would simply add the previous two corrections, +0.50 and −0.28
kJ mol−1, to expect a total correction of +0.22 kJ mol−1. Here we
were able to compute CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) explicitly,
which accounts for both effects simultaneously. The short-range lat-
tice energy contribution for this method, −49.75 kJ mol−1, indicates
that the CCSD(T)/CBS(a[TQ]Z; δ:aDZ) estimate of −50.16 requires

a total correction of +0.41 kJ mol−1. Therefore, attempting to add
the valence basis correction and core-valence correction separately
would introduce an error of 0.22 − 0.41 = −0.19 kJ mol−1 compared
to the explicit CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) computation. The
assumption of additivity of valence basis extensions and core-
valence effects is not so accurate in this case and recovers only about
half of the full correction. On the other hand, a total error of −0.19
kJ mol−1 for these effects may be perfectly acceptable for all but the
most demanding of applications, and the sum of the time required
for CCSD(T)/CBS(a[TQ]Z; δ:aDZ), CCSD(T)/CBS(a[Q5]Z; δ:aTZ),
and CCSD(T)/CBS(aC[TQ]Z; δ:aCDZ) computations would still
be less than the time of the full CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ)
computation, as seen from Table I.

Turning now to the MP2 results, we see substantial dif-
ferences (∼1–5 kJ mol−1) between MP2 and the reference
CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) values for the first three dimers
in Fig. 2. MP2 overbinds these dimers, as is typical for MP2 applied
to π–π interactions. The larger-basis MP2/aTZ results exhibit larger
overbinding, again as is typical.4,12 The MP2 results exhibit a much
larger basis set dependence than the CCSD(T)/CBS focal-point esti-
mates, which is only natural because of the large basis sets and
extrapolation used in the MP2 portion of the CCSD(T)/CBS focal-
point approach. However, note that the MP2/aDZ and MP2/aTZ
dimer energies closely agree with each other in Fig. 2 after the
first three dimers, and moreover, their errors vs the reference
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FIG. 2. Energy difference with respect to CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) per
dimer contribution. The first three dimers, those belonging to the first coordina-
tion shell, account for the largest differences per dimer contribution with respect
to the reference method. For perturbation theory, the differences per dimer con-
tribution decrease to less than 0.5 kJ mol−1 after the third structure. For coupled
cluster, those differences are less than 0.02 kJ mol−1 after the third structure.
Coordination-shell dimers are the only relevant contributors to basis set effects
beyond CCSD(T)/CBS(a[TQ]Z; δ:aDZ) and to core-valence correlation.

CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) values rapidly diminish with dis-
tance. This indicates that MP2 with either basis set may become
a suitable replacement for CCSD(T)/CBS in the evaluation of dis-
tant dimer contributions. Indeed, as seen in Table III, the total MP2
lattice energy contribution of the medium-range dimers is −8.10
(aDZ) or −8.14 (aTZ) kJ mol−1, compared to a reference value of
−6.64 kJ mol−1, or an error of about −1.5 kJ mol−1. Such an error
may be entirely acceptable in many applications (and could be
reduced by redefining “short range” to a slightly larger cutoff). For
the long-range contributions, MP2/aTZ becomes slightly more accu-
rate than MP2/aDZ, yielding −1.40 and −1.46 kJ mol−1, respectively,
vs a reference value of −1.05 kJ mol−1 (errors under one-half kJ
mol−1). In the very long range, the reference CCSD(T)/CBS value
is only −0.11 kJ mol−1, and the MP2/aTZ value of −0.14 kJ mol−1

agrees very well. The MP2/aDZ estimate of −0.21 kJ mol−1 agrees
well in an absolute sense, but the relative error is disappointing over
this range. The sum of long range and very long range exhibits
an error of −0.38 kJ mol−1 for MP2/aTZ and −0.51 kJ mol−1 for
MP2/aDZ.

Given the rapid decrease in the magnitude of the lattice energy
contributions as a function of intermolecular distance and the fairly
good quality of MP2 estimates, at least at medium range or longer,
we turn to consider possible multi-layered approaches aimed at
reducing the cost of computing highly accurate crystal lattice ener-
gies. Figure 3 explores a multi-layered approach using a cutoff
scheme to switch from a highly accurate level of theory, used for
the short-range, to a more efficient one, employed for the long-
range. This is illustrated by the sketch in the figure, with the black
sphere representing the accurate-method domain and the orange
shell depicting the efficient-method domain. The radius of the black
sphere corresponds to the x axis in Fig. 3, whereas the radius of the

FIG. 3. Errors in the total two-body contribution to the lattice energy when using a
two-layer approximation in which a high level of theory (here, the reference data) is
used for dimers whose closest intermonomer contact distance is below a switching
cutoff (given on the x axis), and a lower level of theory [MP2/aDZ, MP2/aTZ, or
CCSD(T)/CBS(a[TQ]Z; δ:aDZ)] is used for the remaining dimers (up to 30 Å). The
inset figure illustrates the use of a high level of theory for the closer dimers (black
area) and a lower level of theory for the remaining dimers (orange area). As shown
here and discussed in the text, CCSD(T)/CBS(a[TQ]Z; δ:aDZ) is essentially an
exact match to our highest-level data from CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) by
about 6 Å and is, therefore, used as the reference method for dimers beyond 8 Å.
The graph illustrates that MP2 is an effective substitute for CCSD(T)/CBS at long
range and that accuracy vs computational cost can be effectively tuned via the
switching cutoff.

orange sphere is fixed and would correspond to the largest dimer
cutoff considered here, 30 Å.

In Fig. 3, the horizontal black-dotted line represents the
total two-body contribution as computed using the best ref-
erence CCSD(T)/CBS data we have for the full set of dimers,
i.e., CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) for R ≤ 8 Å, and
CCSD(T)/CBS(a[TQ]Z; δ:aDZ) 8 < R ≤ 30 Å. All other point
successions in Fig. 3 represent the error incurred by computing the
total two-body contribution as an admixture composed by taking
short-range contributions from our best CCSD(T)/CBS reference
estimates until a certain switching cutoff distance and employing
a more efficient method for the remaining dimers. Therefore,
for example, the first orange circle from the left represents the
total two-body error when no interactions are computed with
CCSD(T)/CBS and the full set of 420 dimers is computed with
MP2/aDZ. In that case, the radius of the black sphere is minimal
and includes no dimer.

The figure demonstrates the utility of a multi-layered approach
for computing the two-body contributions to the lattice energy.
Therefore, as long as CCSD(T)/CBS estimates are used for short-
range contacts, accurate lattice energies can be obtained even when
MP2 is used for medium- and long-range contacts. The accuracy of
the hybrid approach can be tuned by changing the switchover dis-
tance, after which CCSD(T)/CBS is replaced by MP2. Past about 5
Å, errors in this composite approach reduce to less than 1 kJ mol−1,
and by 8 Å, the errors become −0.5 kJ mol−1 (aDZ) or
−0.4 kJ mol−1 (aTZ) (as also seen in Table III). Errors of a few
tenths of 1 kJ mol−1 should be negligible in many applications,
and they may be further reduced by increasing the switchover dis-
tance. Switching to MP2 beyond 8 Å would result in only 17 out
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of 420 dimers being computed with CCSD(T)/CBS (see Table III),
drastically reducing computational costs.

C. Three-body interactions
Table IV presents an analysis of the three-body interactions,

split by distance domain, similar to that of Table III for two-body
interactions. During analysis, we found that the energetic contribu-
tions of the trimers correlated somewhat better with the geometric
mean of the three closest-contact intermolecular distances than with
the “trimer cutoff” (the maximum of those three distances), so our
analysis in this section uses the geometric mean instead. Note that
trimers that would have a geometric mean intermolecular distance
of >15 Å but a trimer cutoff distance of 15 Å (e.g., a trimer forming
a triangle with one short side and two long sides of >15 Å) are not
included in our analysis.

For trimers, the energy differences are calculated with respect to
CCSD(T)/CBS(a[TQ]Z; δ:aDZ), the most accurate method generally
employed here for trimers (however, see Sec. IV E below for even
higher-level computations restricted to the first four trimers only).

Although MP2 provides reasonable results for dimers (especially at
long range), it is not as reliable for trimers, as it lacks any account of
three-body dispersion (which would require the correlated motion
of three electrons—MP2 includes only two-electron correlation).
Therefore, we have considered molecular Axilrod–Teller–Muto
(ATM) corrections to MP2 to approximately account for three-body
dispersion.

The total three-body contribution to the lattice energy is an
order of magnitude smaller than that of two-body interactions, and it
is positive (making the crystal lattice slightly less stable compared to
the two-body estimates). The much smaller importance of the three-
body contribution and the much larger number of trimers compared
to dimers (1977 vs 420, for our choices of cutoff distances) highlight
the desirability of multi-level approaches that use different levels of
theory for different N-mers and/or distances.

The CCSD(T)/CBS(a[TQ]Z; δ:aDZ) results in Table IV indi-
cate that the short-range set (0–3 Å), which includes the four
coordination-shell trimers, accounts for 2.66 kJ mol−1 (73%) of
the total three-body contribution; the intermediate-range (3–6 Å),
including 186 trimers, accounts for 0.76 kJ mol−1 (21%); and the

TABLE IV. Summary of total three-body contributions, split by separation domain, for each method employed in this study.
All energies are in kJ mol−1. Cutoff distances, which are the geometric mean of the three closest-contact intermolecular
separations, are expressed in Å. Only trimers with a “trimer cutoff” of <15 Å are included in the data (see text). Percentages
reflect the contribution to the overall three-body energy computed at the corresponding level of theory. Accumulated energy
differences with respect to the reference method for three-body interactions, CCSD(T)/CBS(a[TQ]Z; δ:aDZ), are indicated in
parentheses for each range.

Total Short Medium Long
Range R ≤ 15 R ≤ 3 3 < R ≤ 6 6 < R ≤ 15

CCSD(T)/CBS(a[TQ]Z; δ:aDZ)
3.63 2.66 0.76 0.20

100.00% 73.3% 21.1% 5.6%
Ref. Ref. Ref. Ref.

MP2/aTZ
0.53 0.26 0.24 0.03

100.0% 48.9% 44.7% 6.4%
(−3.10) (−2.40) (−0.53) (−0.17)

MP2/aDZ
0.43 0.16 0.26 0.01

100.0% 37.1% 59.7% 3.2%
(−3.19) (−2.50) (−0.51) (−0.19)

MP2/aTZ + ATM
3.33 1.68 1.33 0.32

100.0% 50.4% 40.0% 9.6%
(−0.29) (−0.98) (0.57) (0.12)

MP2/aDZ + ATM
3.24 1.58 1.35 0.30

100.0% 48.9% 41.9% 9.2%
(−0.39) (−1.08) (0.59) (0.10)

ATM
2.80 1.42 1.10 0.29

100.0% 50.7% 39.1% 10.2%
(−0.82) (−1.24) (0.33) (0.08)

Number of unique trimers 1977 4 186 1787
100.0% 0.2% 9.4% 90.4%
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long-range (6–15 Å), which includes the remaining 1787 trimers,
accounts for only 0.20 kJ mol−1 (6%) of the total three-body
contribution.

Table IV demonstrates the unsuitability of plain MP2 for
computing the three-body contributions; MP2 misses more than
3 kJ mol−1 of the three-body term, which is only 3.63 kJ mol−1 in
size [CCSD(T)/CBS]. Most of the error comes from the four short-
range trimers, but MP2 misses 0.70 kJ mol−1 from the remaining
trimers. In all cases, the MP2 values for the three-body contri-
bution are not positive enough (three-body dispersion, missing in
MP2, tends to be positive). MP2 estimates of the three-body term
become essentially zero for the long-range trimers, indicating that
three-body induction contributions have died out at this range.
However, CCSD(T)/CBS(a[TQ]Z; δ:aDZ) results provide another
0.20 kJ mol−1 for the long-range bin, indicating that three-body
dispersion remains a small contributor at these distances. Pure
ATM is able to provide a good estimate for the long-range bin
(0.29 kJ mol−1), and MP2+ATM is also good at these distances
because the MP2 contribution here is very nearly zero. However,
in the intermediate range, ATM overestimates the three-body dis-
persion (1.10 kJ mol−1 vs the reference value of 0.76 kJ mol−1), and
the three-body induction contributions captured by MP2 lend about
another quarter of one kJ mol−1, making MP2+ATM overestimate
the CCSD(T)/CBS result by about 0.6 kJ mol−1 for the intermediate
range. For the short-range bin, as just mentioned, the MP2 values
are significantly underestimated vs the benchmark values due to the
lack of three-body dispersion. MP2/aDZ and MP2/aTZ values are
in nearly perfect agreement with each other across the distance bins
in Table IV, except for the short-range bin, where they differ by a
minor 0.1 kJ mol−1.

ATM underestimates the three-body dispersion contribution
at a short range, resulting in MP2+ATM underestimating the
CCSD(T)/CBS contribution at a short range by about 1 kJ mol−1.
Overall, the underestimation of three-body dispersion at short
range and the overestimation of three-body dispersion at medium
and long range by ATM mean that MP2+ATM provides fortu-
itously accurate results overall, 3.24 kJ mol−1 (MP2/aDZ+ATM) or
3.33 kJ mol−1 (MP2/aTZ+ATM), vs the CCSD(T)/CBS value of
3.63 kJ mol−1. Plain ATM is not quite as good, at 2.80 kJ mol−1,
due to its lack of three-body induction and short-range three-
body exchange-repulsion (in sum, worth about 0.4–0.5 kJ mol−1

according to MP2).
Figure 4 presents how the total three-body contribution to the

lattice energy accumulates when adding an increasing number of
trimers (similarly to Fig. 1 for the two-body contribution). Figure 4
demonstrates the convergence of the three-body energy within half
a kJ mol−1 of the asymptotic value by a trimer geometric mean of
5 Å and to a quarter of a kJ mol−1 by 6.5 Å for all methods. This sug-
gests that approximate treatments could truncate the list of trimers
to include them well before the 15 Å trimer cutoff employed here.
Of course, longer cutoffs would probably be required for crystals of
small organic molecules with net dipole moments, as the induction
contribution would then be expected to have a larger range.42

Figure 4 again illustrates that in crystalline benzene, three-
body dispersion effects are much more important than three-body
induction effects because the pure ATM model is a much better
match to the benchmark CCSD(T)/CBS data than MP2. Because

FIG. 4. Accumulation of three-body contributions to the lattice energy as a func-
tion of the geometric mean of the three closest-contact inter-monomer distances.
The three-body contribution is very small compared to the two-body contribution
for benzene. Nonetheless, three-body dispersion effects are clearly reflected in
the difference between CCSD(T) and MP2, which is about 3 kJ mol−1 and can
be approximately accounted for by using an Axilrod–Teller–Muto correction. Only
trimers with a “trimer cutoff” of 15 Å are included in the data (see text).

there is no double-counting among effects between ATM and MP2,
the MP2+ATM results are an even closer match to the bench-
mark CCSD(T)/CBS data (MP2+ATM includes a treatment of
both three-body induction and three-body dispersion). However,
note that the very close asymptotic agreement between MP2+ATM
and CCSD(T)/CBS results from a closing of the gap between the
MP2+ATM and CCSD(T)/CBS curves as one progresses to more
distant trimers. In principle, these curves should remain separated
but parallel if MP2+ATM becomes nearly exact for long-range
trimers. The gap closes because ATM (with the parameters used)
overestimates three-body dispersion at long range (as previously
noted in the discussion of Table IV).

We now turn to examine the biggest individual contributions
and their errors. Figure 5 presents an analysis of the contribution
of each trimer across different levels of theory. The figure includes
the first 26 trimers sorted by the “trimer cutoff” distance. The results
are plotted as errors vs the CCSD(T)/CBS(a[TQ]Z; δ:aDZ) reference
data. For an individual trimer, the MP2/aDZ and MP2/aTZ results
are nearly identical, suggesting very weak basis set dependence.
This is consistent with the previous observation of very similar
total three-body energies from MP2/aDZ and MP2/aTZ. The first
four trimers, which constitute the short-range domain, show larger
energy differences across all levels of theory compared to the remain-
ing trimers, analogous to what was observed for dimers. These four
configurations are the main source of errors (see also Table IV), with
an overall overbinding tendency.

The convergence of the lattice energy contribution errors in
Fig. 5 is remarkably quick for MP2. Most mid-range trimers show
negligible contribution errors for MP2, with only a few trimers with
larger errors in the ∼0.1–0.2 kJ mol−1 range. The individual errors
have mixed signs, which reduces the additive error. The molecular
ATM correction helps improve the accuracy of the individual MP2
contributions in all cases but one (by a negligible margin).
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FIG. 5. Energy difference with respect to CCSD(T)/CBS(a[TQ]Z; δ:aDZ) per trimer
contribution for the first 26 trimers sorted by the “trimer cutoff” (longest of the
three intermolecular closest-contact distances). The first ten trimers account for
the largest differences per trimer contribution with respect to the reference method.
The differences per trimer contribution decrease to less than 0.1 kJ mol−1 after the
tenth structure. In addition, the ATM correction cuts the energy differences of the
first ten trimers by about half or more.

We stated previously that the molecular ATM (teal) achieves
a better overall representation of three-body interactions than pure
MP2. Figure 5 provides additional insight and shows that, on a
trimer-by-trimer basis, the ATM contributions do not match those
of CCSD(T)/CBS any better than MP2. Indeed, the ATM produces a
few notable outliers. The simple molecular ATM model used here
is suitable at long range but is not expected to be as reliable at
shorter range. One reason is that it depends only on intermolec-
ular COM distances and angles and, therefore, cannot distinguish
between trimers with different monomer orientations but equiva-
lent COM distances. There are such trimers in crystalline benzene,
as discussed in some detail in the CrystaLattE implementation arti-
cle.21 Figure 5 and Table IV suggest that the molecular ATM model
becomes more appropriate at larger distances. Another reason is
that the simple ATM approach used here was not damped at short
range. In a concurrent study,43 we examined ATM corrections for
benzene, carbon dioxide, and triazine and found that MP2 plus
atomic ATM corrections with Tang–Toennies damping works more
effectively for short-range trimers (although errors can remain a sig-
nificant fraction of one kJ mol−1 for the accumulated short-range
contribution).

We switch now to the investigation of multi-layered approaches
to improve the efficiency of accurate crystal lattice energy calcula-
tions. In a similar fashion to the analysis of mixed approaches to the
two-body energy in Fig. 3, Fig. 6 shows the errors in the three-body
energy vs our benchmark value if the benchmark method is used
for closer trimers but a more approximate method (MP2, ATM, or
MP2+ATM) is used for more distant trimers. Figure 6 supports the
idea that multi-level approaches enable dramatic efficiency improve-
ments with little compromise in accuracy. Even when we switch
to approximate methods immediately after the closest four trimers
are treated with the reference method, the error is already within
0.7 kJ mol−1 (as also seen in Table IV).

FIG. 6. Errors in the total three-body contribution to the lattice energy when using
a two-layer approximation employing two different methods. A high level of theory
[here, CCSD(T)/CBS(a[TQ]Z; δ:aDZ)] is used when the geometric mean of the
three inter-monomer distances is below a certain switching cutoff (given on the
x axis), and a lower level of theory (MP2, ATM, or MP2+ATM) is used for the
remaining trimers (up to 15 Å). The inset figure illustrates the use of a high level
of theory for the closer trimers (red area) and a lower level of theory for the more
distant trimers (orange area). The graph illustrates that only the closer trimers need
to be computed using CCSD(T)/CBS, and more distant trimers may be computed
using the approximate methods considered, with errors of only about 0.5 kJ mol−1

after a switchover distance of 4 Å.

Due to the particulars of the error cancellation, admixing
CCSD(T)/CBS with ATM-corrected MP2 results in slightly larger
errors than the admixture of CCSD(T)/CBS with plain MP2 for
switchover distances around 3 Å, but MP2+ATM becomes a supe-
rior method for the more distant trimers after a switchover dis-
tance of around 3.5 Å. As the switchover distance is increased, the
MP2+ATM errors continue to decrease to below 0.2 kJ mol−1 a little
before 4 Å, briefly rise back to about 0.3 kJ mol−1 around 4.5 Å, and
then smoothly decrease toward zero. Using plain MP2 for the more
distant trimers causes increasing errors from 3.5 to 4 Å (where they
reach about −0.6 kJ mol−1) and then decreasing errors thereafter.
Using only ATM for the more distant trimers yields more erratic
error behavior as a function of the switchover distance.

Overall, Fig. 6 supports the notion that a model like
MP2+ATM, which can approximately describe three-body induc-
tion, exchange, and dispersion, can be a very effective replacement
for the much more time-consuming CCSD(T) method for more dis-
tant trimers. For a switchover distance of 4 Å or greater, the errors
induced by replacing CCSD(T) with MP2+ATM are very small,
0.3 kJ mol−1 or less, and if necessary, they can be reduced by using
larger switchover distances.

D. Four-body interactions
To our knowledge, four-body interactions in crystalline ben-

zene have only been studied before by Chan and co-workers.13 Their
study performed explicitly-correlated local CCSD(T) computations
(including the T0 approximation for triples)44 on the single tetramer
with the closest intermolecular contacts (this symmetry-unique
tetramer has eight symmetry-redundant replicas). This tetramer
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TABLE V. Summary of total four-body contributions, split by separation domain, for
each method employed in this study. All energies are in kJ mol−1. Cutoff distances are
expressed in Å. Percentages reflect the contribution to the overall four-body energy
computed at the corresponding level of theory.

Total Short Medium Long
Range R ≤ 10 R ≤ 4 4 < R ≤ 8 8 < R ≤ 10

CCSD(T)/CBS
(a[TQ]Z; δ:aDZ) N/A −0.11 N/A N/A
MP2/aTZ 0.14 −0.05 0.20 −0.01
MP2/aDZ 0.14 −0.05 0.19 −0.01

Number of tetramers 1332 1 459 872
100.0% 0.1% 34.5% 65.5%

makes a four-body contribution of −0.38 kJ mol−1 to the crys-
tal lattice energy. This contribution was almost canceled out by
their estimate of four-electron correlation effects in the crystal,
+0.36 kJ mol−1. This suggests that both of these effects could
be neglected without incurring significant errors. Nonetheless, the
extent to which four-body interactions could contribute remains a
bit uncertain without performing post-Hartree–Fock computations
on more than the nearest-neighbor tetramer and discarding the T0
approximation for triple excitations. We address both of these issues
here.

In Table V, we report total four-body contributions, com-
puted with MP2, up to a tetramer cutoff of 10 Å (resulting in 1332
tetramers). There is only one tetramer that falls into the short-range
domain. The mid-range contribution is of the opposite sign and
comparable in order of magnitude to the short-range. The long
range contribution is negligible.

Due to the prohibitive cost of computing the total four-body
contribution with CCSD(T)/CBS(a[TQ]Z; δ:aDZ), the tetramer cut-
off employed for this level of theory was reduced to 5.3 Å. Some addi-
tional tetramers were computed as spot checks at longer separations.
We computed the four-body contribution of 24 symmetry-unique
tetramers (which account for 180 symmetry-redundant structures)
with CCSD(T)/CBS(a[TQ]Z; δ:aDZ).

Figure 7 presents the accumulation of the total four-body con-
tribution to the lattice energy when considering an increasing value
for the tetramer cutoff (similarly to Fig. 1). The scale of the y axis
in this figure is an order of magnitude smaller than that of trimers
(Fig. 4), highlighting how remarkably small the total four-body con-
tribution is. According to these results, the effect of the basis set size
is minimal. Additionally, the variations of the accumulated four-
body contribution at several cutoffs (the span of the distribution
of points at a given cutoff) show that, at 10 Å, the total energy is
converged to a variation smaller than 0.1 kJ mol−1.

In lieu of a cost-prohibitive comprehensive analysis of errors vs
CCSD(T)/CBS according to distance domain, in Fig. 8, we present
MP2/aDZ and MP2/aTZ errors for the lattice energy contribu-
tions of several selected tetramers. The figure includes the first 17
tetramers, spanning the short-range domain and a little over a quar-
ter of the mid-range domain (up to a tetramer cutoff of 5.3 Å), and
seven additional randomly chosen tetramers, which are distributed
among the mid- and long-range regions (5.3–10 Å). The results
are plotted using CCSD(T)/CBS(a[TQ]Z; δ:aDZ) as references

FIG. 7. Accumulation of four-body contributions to the lattice energy as a func-
tion of the longest of the four monomer–monomer closest-contact distances
(the tetramer cutoff ). Due to crystal symmetry, several tetramers have identical
tetramer cutoffs, leading to vertical stacks of points. The additional, darker shaded
area in this figure helps delimit the portion of the mid-range region fully covered
with CCSD(T)/CBS(a[TQ]Z; δ:aDZ) (<5.3 Å) from that where only spot checks
were performed with this level of theory. The asymptotic value, computed with
MP2, fluctuates in the range depicted by the plot, which is practically negligible.
The total four-body contribution is extremely small compared to the total three-
body contribution and vanishes when compared to the total two-body contribution
for benzene. Tetramers containing stacked conformations of benzene are slightly
more negative when computed CCSD(T) vs MP2.

(red dots in Fig. 7). For the closest tetramer (the only one falling
in the short range domain), MP2 in either basis set gives errors
of less than −0.06 kJ mol−1, which agrees very well in an absolute
sense to our CCSD(T) estimate, and the errors rapidly decrease with
increasing distance. As was the case for trimers, basis set size effects
for individual tetramer contributions are minimal, with the triple-ζ

FIG. 8. Energy difference with respect to CCSD(T)/CBS(a[TQ]Z; δ:aDZ) per
tetramer contribution. The figure includes the first 17 tetramers up to a tetramer
cutoff of 5.3 Å and seven additional tetramers distributed along the mid- and
long-range, from 5.3 to 10 Å. The differences per tetramer contribution decrease
to extraordinarily small numbers at longer ranges. The only coordination-shell
tetramer shows the largest energy difference, almost twice that of the next largest
one. The differences per tetramer contribution are of mixed signs and one order of
magnitude smaller than those of trimers.
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basis appearing slightly better in most cases. Even among these 24
tetramers, individual errors of mixed signs can be found, suggesting
that the overall accumulated error in the four-body contribution to
the lattice energy is small.

Due to the limited tetramer cutoff employed for
CCSD(T)/CBS(a[TQ]Z; δ:aDZ), we omit an admixed contribution
plot, like Figs. 3 and 6. However, if we repeat the multi-layered
scheme, adding up the individual contributions of the 17 tetramers
at the CCSD(T)/CBS(a[TQ]Z; δ:aDZ) level of theory up to a switch-
ing cutoff of 5.3 Å and appending the remaining 1315 contributions,
up to 10 Å, computed with MP2/aTZ, we obtain a remarkably small
total four-body admixed contribution of −0.03 kJ mol−1. If instead
of MP2/aTZ, we use MP2/aDZ, that admixed contribution would
be an essentially identical −0.02 kJ mol−1. Our estimate is very
small in magnitude and suggests that tetramers do not contribute
significantly to the lattice energy of crystalline benzene, even if one
desires a high-accuracy result.

E. Coupled cluster lattice energy of crystalline
benzene

We present the benchmark-level results for the two-, three-,
and four-body contributions to the lattice energy of crystalline ben-
zene in Table VI. Compared to the three-body results discussed
earlier, here we have replaced values for the four closest trimers
with an even higher level of theory, CCSD(T)/CBS(a[Q5]Z; δ:aTZ)
(using FNO’s with a tight occupation number cutoff of 10−8). The
updated contribution from these four trimers is 2.61 kJ mol−1,
compared to 2.66 kJ mol−1 at the CCSD(T)/CBS(a[TQ]Z; δ:aDZ)
level of theory (see Table IV). This very minor change is pleas-
ing and validates the use of CCSD(T)/CBS(a[TQ]Z; δ:aDZ) for
the remaining trimers. By analogy to our analysis of two-body
terms, we expect CCSD(T)/CBS(a[TQ]Z; δ:aDZ) to be an even bet-
ter approximation to CCSD(T)/CBS(a[Q5]Z; δ:aTZ) for the more
distant trimers.

For benzene, the N-body expansion converges very rapidly,
with each N-body contribution decreasing by an order of magnitude
(or more) from the previous one. While the great majority of the
lattice energy comes from two-body interactions, three-body terms
are not totally negligible for high-accuracy studies: they contribute
3.57 kJ mol−1, or 7% of the total lattice energy. These findings seem
reasonable given that benzene lacks a permanent dipole moment,
so one would expect polarization terms to be small, and these would
normally be a large contributor to three- and four-body terms. How-
ever, the crystal packs closely enough that three-body dispersion is
not negligible. Four-body effects, estimated at −0.03 kJ mol−1, are
negligible for crystalline benzene.

With these very accurate results in hand, it is worthwhile to
compare them to some of the best previous results from the lit-
erature. To our knowledge, the most accurate previous two-body
energy comes from the study of Chan and co-workers,13 who esti-
mated the Hartree–Fock CBS limit and added electron correlation
via explicitly-correlated CCSD(T)-F12a and an aug-cc-pVTZ basis
set. The total two-body HF/CBS contribution was 21.36 kJ mol−1.
Electron correlation contributions were computed for dimers up to
a center-of-mass separation of 11 Å, contributing−77.30 kJ mol−1. A
core correlation correction, computed for nearest-neighbor dimers
using MP2/aug-cc-pwCVQZ, yielded −0.58 kJ mol−1. As mentioned
previously, they also attempted to estimate the effect of quadru-
ple excitations, although this estimate involved the too-small 6-31G
basis set, a large number of frozen orbitals, and simple scaling
schemes that attempted to correct for the small basis set and large
frozen core; this yielded an additional 0.36 kJ mol−1. Despite these
approximations, we are unable to improve upon this quadruple exci-
tation estimate in the current work. Finally, they utilized existing
asymptotic long-range corrections (from Ref. 9) to estimate disper-
sion contributions from dimers beyond 11 Å, based on dynamic
polarizabilities computed via density functional theory; this pro-
vided an additional −1.48 kJ mol−1. The sum of all these two-body
contributions is −57.64 kJ mol−1. Our best two-body estimate,

TABLE VI. Benchmark-level results for the lattice energy of crystalline benzene using a many-body approach. Contributions
to the lattice energy are given for each non-additive N-body term. Only symmetry-unique structures are counted. Cutoff
distances are in Å, and energies are in kJ mol−1.a

N Level of theory Cutoff Structures Total contribution

2 CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) R ≤ 8 17 −56.39
2 CCSD(T)/CBS(a[TQ]Z; δ:aDZ) 8 < R ≤ 30 403 −1.16
2 Total R ≤ 30 420 −57.55

3 CCSD(T)/CBS(a[Q5]Z; δ:aTZ) R ≤ 3 4 2.61
3 CCSD(T)/CBS(a[TQ]Z; δ:aDZ) 3 < R ≤ 15 1973 0.96
3 Total R ≤ 15 1977 3.57

4 CCSD(T)/CBS(a[TQ]Z; δ:aDZ) R ≤ 5.3 17 −0.23
MP2/aTZ 5.3 < R ≤ 10 1315 0.20

4 Total R ≤ 10 1332 −0.03

Total −54.01
aFor dimers and tetramers, the cutoff distances refer to the “dimer cutoff” and “tetramer cutoff” criteria, respectively. For trimers,
we used the geometric mean of the intermolecular closest-contact distances as in the trimer analysis.
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−57.55 kJ mol−1, is in excellent agreement with this previous best
result, especially given numerous technical differences between our
theoretical approaches. Because we did not include a four-electron
correction, a more direct comparison would be through three-
electron corrections only; that comparison is −57.55 (present value)
vs −58.00 kJ mol−1 (Chan’s value without four-electron correc-
tion), or a difference of 0.45 kJ mol−1. This difference of about a
half of 1 kJ mol−1 remains quite reasonable and is consistent with
Chan’s goal of computing the lattice energy with an accuracy of
less than 1 kJ mol−1. Nevertheless, given that this is half of the
desired error bars, it is perhaps worthwhile to trace the origins of the
difference.

To do so, we compared our CCSD(T)/CBS(a[Q5]Z; δ:aTZ)
focal-point dimer energies to the HF/CBS + CCSD(T)-F12a/aug-cc-
pVTZ correlation energies for all dimers computed by Chan and
co-workers (up to a COM distance of 11 Å). These approaches
should be quite comparable.45 There are a couple of worrying dis-
crepancies of ∼0.4 kJ mol−1 among the first four dimers, but perhaps
fortuitously, the differences appear with opposite signs and thus can-
cel. Indeed, all the small differences cancel by the time all dimers
up to 11 Å (COM separation) are considered, and the two-body
energies are −55.97 kJ mol−1 for CCSD(T)/CBS(a[Q5]Z; δ:aTZ) and
−55.96 kJ mol−1 for HF/CBS + CCSD(T)-F12a/aug-cc-pVTZ corre-
lation. Therefore, the discrepancy comes from other sources than the
base electronic structure method. One discrepancy arises from the
estimate of core-valence electron correlation. In the present study,
we promoted the theoretical approach from CCSD(T)/CBS(a[Q5]Z;
δ:aTZ) to CCSD(T)/CBS(aC[Q5]Z; δ:aCTZ) to account for core-
valence correlation (i.e., moved from the aug-cc-pVXZ to the aug-
cc-pwCVXZ basis set and unfroze core electrons). This gives us a
total contribution of −56.04 kJ mol−1 for the dimers up to 11 Å
COM distance, or a core-valence correction of −56.04 − (−55.97)
= −0.07 kJ mol−1. By contrast, Chan and co-workers computed core-
valence corrections using only the MP2 level of theory (with an
aug-cc-pwCVQZ basis) and only for the first four dimers. Indeed,
we have found that only the first three or four dimers are relevant
for the core-valence correlation, but apparently, MP2 significantly
overestimates the effect: Chan and co-workers obtained a value of
−0.58 kJ mol−1 for the core-valence lattice energy contribution, for
an error of −0.51 kJ mol−1. This is quite close to the previously noted
difference of 0.45 kJ mol−1 between our final two-body lattice ener-
gies, and so the primary source of discrepancy is the treatment of the
core-valence correlation. The MP2 approximation used by Chan and
co-workers to estimate the core-valence contribution—a fairly stan-
dard approach—is not particularly reliable in the case of crystalline
benzene.

We may also directly compare our results for longer-range
dimers. Chan and co-workers treated only 15 dimers with coupled-
cluster theory (up to 11 Å COM distance), whereas we included 420
(up to minimum intermonomer separations of 30 Å). On the other
hand, Chan and co-workers used an asymptotic formula from Ref. 9
to estimate the dispersion for a very large number of dimers beyond
11 Å COM separation. These two rather different approaches give
essentially the same results for dimer contributions beyond the 11 Å
COM distance. We obtain −57.55 (total reference CCSD(T) result)
− (−56.04) (reference results up to 11 Å) = −1.51 kJ mol−1 for
the two-body contributions beyond 11 Å COM. Chan’s result is

−1.48 kJ mol−1. This excellent agreement may be partly fortuitous,
but otherwise, it suggests that the asymptotic estimates from Sza-
lewicz and co-workers9 are very effective for their purpose and that
they work quite well as close as 11 Å COM separation.

For three-body terms, the present study improves substantially
on the methodology used in our 2014 examination.12 In that work,
we used CCSD(T)/aug-cc-pVDZ for only the 366 closest (symmetry-
redundant) trimers, and then we used MP2/aug-cc-pVDZ for an
additional 7750 (symmetry-redundant) trimers, plus the asymptotic
limit for ATM corrections for all trimers beyond the first 366 treated
by CCSD(T). Here, we improve the electronic structure method to
focal-point CCSD(T)/CBS(a[TQ]Z; δ:aDZ), which should be able to
capture induction effects more accurately thanks to the MP2/CBS
extrapolation inherent in the focal-point scheme used. We also
go out to 1787 symmetry-unique trimers using this CCSD(T)/CBS
approach, a dramatic expansion in the number of trimers treated
at a high level. Our earlier estimate of the three-body contribution
to the lattice energy was 0.89 kcal mol−1, or 3.72 kJ mol−1.12 The
present result of 3.57 kJ mol−1 is in remarkably good agreement
(likely somewhat fortuitously so) and supports our earlier asser-
tion12 that MP2+ATM is a good substitute for CCSD(T) beyond
about the first 366 symmetry-redundant trimers. The closer trimers
have a degeneracy factor of 6, so these 366 symmetry-redundant
trimers would equate to about 61 symmetry-unique trimers. Con-
sulting Table IV, we see that this would put us about one third
of the way through the 186 trimers in the “medium” (3 < R ≤ 6)
range, in which MP2/aDZ+ATM exhibits an accumulated error of
0.59 kJ mol−1. Therefore, the very good agreement between the
present three-body estimate and our 2014 estimate suggests that the
majority of the error in the “medium” range in Table IV comes from
the first portion of the range and could be eliminated by employing
CCSD(T)/CBS partway into the medium range trimers. Indeed, this
is exactly what was shown in the discussion of Fig. 6.

We may also compare our result to the study by Chan and co-
workers for three-body terms.13 For three-body terms, that study
used estimates of the Hartree–Fock CBS limit and computed correla-
tion energies using an orbital-specific virtual (OSV) local explicitly-
correlated CCSD(T)-F12a approach with the T0 approximation for
triples,44 i.e., OSV-LCCSD(T0)-F12a.46,47 This approach was used
for 96 symmetry-unique trimers with an average center-of-mass dis-
tance of less than 9 Å. Compared to canonical CCSD-F12a, Chan
and co-workers found the largest local correlation error among the
four closest trimers to be −0.13 kJ mol−1. Unfortunately, due to
computational expense, the effect of the T0 approximation was not
tested. The nearest-neighbor trimers contributed 1.95 kJ mol−1, and
the total for 96 trimers was 3.09 kJ mol−1. The core correlation
was assessed via MP2/aug-cc-pwCVQZ and was found to contribute
−0.01 kJ mol−1 for the nearest neighbor trimers. A very large number
of trimers beyond the average COM distance of 9 Å were modeled
by an ATM model of three-body dispersion taken from Ref. 9 and
contributed an additional 0.35 kJ mol−1 for an overall three-body
contribution of 3.43 kJ mol−1 to the lattice energy.

For the four closest trimers, as noted earlier, we computed
three-body energies using the computationally very expensive
CCSD(T)/CBS(a[Q5]Z; δ:aTZ) approach, which should be similar
in quality to the OSV-LCCSD(T0)-F12a/aug-cc-pVTZ approach of
Chan and co-workers, but having the advantage that we do not
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invoke the T0 approximation. In both approaches, the effect of
triple excitations is evaluated in the aug-cc-pVTZ basis set. For
the four closest trimers, we obtain a three-body contribution of
2.61 kJ mol−1, which is 0.66 kJ mol−1 greater than the 1.95 kJ mol−1

value of Chan and co-workers, suggesting that the T0 approximation
can cause errors in three-body energies that are significant if one
wishes to obtain sub-kJ mol−1 accuracy. If we sum all the trimers
within 9 Å COM distance, using CCSD(T)/CBS(a[TQ]Z; δ:aDZ)
beyond the first four, we obtain 3.41 vs 3.09 kJ mol−1 for Chan
and co-workers. Our trimers beyond 9 Å COM distance provide an
additional 0.29 kJ mol−1, vs the long-range asymptotic estimate of
0.35 kJ mol−1 of Chan and co-workers. Our total three-body value,
3.57 kJ mol−1, agrees very well with the final value of 3.43 kJ mol−1

from Chan and co-workers due to a cancellation of errors between
the nearest-neighbor trimers and the remaining short-range trimers.

Finally, for the four-body terms, we can again compare them
to the work of Chan and co-workers.13 Their study considered only
the closest tetramer. They used an approach similar to the one they
used for trimers described earlier, except that electron correlation
was computed using the non-augmented cc-pVTZ basis set. The
total four-body lattice energy contribution of this tetramer was
−0.11 kJ mol−1 for Hartree–Fock, plus a correlation contribution of
−0.28 kJ mol−1, for a total four-body energy of −0.38 kJ mol−1. For
the closest tetramer, we obtain a four-body contribution to the lattice
energy of −0.11 kJ mol−1 at the focal-point CCSD(T)/CBS(a[TQ]Z;
δ:aDZ) level of theory. It is not immediately obvious which result
should be more accurate for the tetramer. Our approach has the
advantage of using diffuse functions and not the T0 approxima-
tion, whose effects on four-body energies are unknown. On the
other hand, the approach of Chan and co-workers utilizes a triple-
ζ basis for the triples contribution (compared to the double-ζ basis
for ours) and explicit correlation techniques for singles and doubles
(although our [TQ] extrapolation of MP2 should be about as effec-
tive at capturing these effects). The two results are in fairly good
agreement in an absolute sense (they both agree that the contri-
bution is very small). Our results on further trimers indicate that
the contributions become slightly positive at larger ranges, and then
they die off quickly so that the overall four-body sum is negligible
(−0.03 kJ mol−1). By considering only the first tetramer, it appears
that the study of Chan and co-workers has slightly overestimated the
magnitude of four-body contributions by a few tenths of a kJ mol−1.

Overall, our best estimate of the overall crystal lattice energy of
benzene using the 138 K crystal structure is −54.01 kJ mol−1, which
compares to the final estimate of −54.58 ± 0.76 kJ mol−1 at this same
structure by Chan and co-workers. As just discussed earlier, our
approaches are overall similar but differ in several details, such as
the number of N-mers treated directly with quantum mechanics, the
treatment of core-valence correlation, and the use of the T0 approx-
imation for three- and four-body terms by Chan and co-workers.
Therefore, the overall level of agreement is quite good. Directly
comparin to experiment is challenging, as discussed by Chan and co-
workers13 and others.27,48,49 The experiment measures sublimation
energies rather than lattice energies, so to estimate the lattice energy
from the experiment, one must correct for contributions from zero
point energy as well as finite-temperature thermal effects from
phonon modes. Taking into account these zero-point and finite-
temperature enthalpy corrections, Chan and co-workers estimated

a 0 K experimentally deduced lattice energy of −55.3 ± 2.2 kJ mol−1.
If we utilize their estimate of a −1.32 ± 0.1 kJ mol−1 correction for
changing the geometry from the 138 K structure to the hypotheti-
cal 0 K structure, our resulting lattice energy of −55.33 kJ mol−1 is
in excellent agreement. We expect the largest source of error in our
computations to be the lack of quadruple excitations in the coupled-
cluster treatment, which should make a small contribution to the
closest dimers and perhaps trimers.

V. CONCLUSIONS
The primary objective of the current study was to investigate

“multi-level” schemes for accurate yet efficient computation of lat-
tice energies of molecular crystals using wavefunction methods and
the molecular many-body expansion, with benzene as the initial case
study. Based on our previous work on non-covalent interactions in
general and crystalline benzene in particular,4,12,21 we hypothesized
that CCSD(T) complete-basis-set (CBS) estimates for short-range
dimers and trimers, plus MP2 estimates for long-range dimers and
trimers (possibly supplemented by Axilrod–Teller–Muto correc-
tions for three-body dispersion), would yield a very accurate lattice
energy while providing a tremendous savings in computational
cost compared to CCSD(T)/CBS computations on all significant
dimers and trimers. To carefully assess such schemes, we performed
CCSD(T)/CBS computations on many more dimers, trimers, and
tetramers from the crystal than had previously been considered at
this level. We investigated the convergence of two- and three-body
terms with respect to intermolecular distances to assess what dis-
tance cutoffs would be appropriate for various target accuracies. We
also investigated at what distances MP2 or MP2+ATM corrections
became reliable replacements for the full CCSD(T)/CBS estimates.
The basis set dependence of the CCSD(T) and MP2 values and the
importance of core-valence contributions were also considered.

Our final best estimate of the CCSD(T)/CBS lattice energy
of crystalline benzene at the 138 K experimental crystal struc-
ture, −54.01 kJ mol−1, agrees very well with the lattice energy of
−54.58 kJ mol−1 reported by Chan and co-workers13 using overall
similar methods that differ in several details; this agreement is partly
fortuitous and results from several partially canceling differences.
When adjusted for the difference in crystal structure between 138 K
and the hypothetical 0 K structure (a correction of−1.32 kJ mol−1),13

our estimate of −55.33 kJ mol−1 is in excellent agreement
with the best estimate13 of the 0 K experimental lattice energy,
−55.3 ± 2.2 kJ mol−1. The agreement is partially fortuitous because
we were unable to add any corrections for quadruple excitations in
the coupled-cluster treatment.

As hypothesized, MP2(+ATM) does appear to be a viable
replacement for CCSD(T)/CBS for medium- to long-range two- and
three-body contributions. The MP2 computations are dramatically
faster, yielding approximately CCSD(T)/CBS-quality results for the
lattice energy at a greatly reduced computational cost. For medium-
and long-range interactions, MP2 provides nearly identical results
whether an aDZ or aTZ basis is used, so we recommend aDZ for
additional computational speed. If we replace CCSD(T)/CBS with
MP2/aDZ for all dimers with a closest-contact separation of 4 Å or
more and with MP2/aDZ+ATM for all trimers where the geometric
mean of three closest-contact intermolecular distances is more than
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3 Å, we incur an error vs our best estimate of −1.3 kJ mol−1, which is
quite accurate (well within “chemical accuracy”) and would require
CCSD(T)/CBS computations on only three closest dimers and four
closest trimers; however, we also note that this result benefits from
some error cancellation between positive three-body errors and neg-
ative two-body errors. This error level is likely acceptable for most
applications, but it could be further reduced by moving the switch-
ing cutoff to larger values. Including more dimers with CCSD(T) is
more beneficial for reducing the error than including more trimers
with CCSD(T), simply because the two-body contribution is much
larger than the three-body contribution.

CCSD(T)/CBS was also used to evaluate several close tetramers,
and many additional tetramers were evaluated with MP2. MP2 tends
to underestimate the lattice energy contribution of the tetramers
compared to CCSD(T), but nevertheless, the total four-body con-
tribution appears to be negligible.

Although approximate methods appear to be very suitable for
more distant dimers and trimers, we were surprised to see that
nailing down the lattice energy contributions of the very closest
dimers and trimers is apparently even more difficult than previously
realized.

Our baseline benchmark method in this study is a focal-point
approach based on MP2/aug-cc-pVTZ and MP2/aug-cc-pVQZ
computations to extrapolate to the MP2/CBS limit, with a correction
for higher-order electron correlation computed as the difference
between CCSD(T) and MP2 in the smaller aug-cc-pVDZ basis. This
composite approach was denoted CCSD(T)/CBS(a[TQ]Z; δ:aDZ)
for short. For dimers at short and medium ranges, we considered
even larger basis sets for the MP2 and CCSD(T) computations
and the importance of core-valence correlation. Using the aug-cc-
pwCVXZ basis sets, core-valence computations analogous to our
baseline benchmark level demonstrate a core-valence correction of
−0.28 kJ mol−1 for the lattice energy contribution of the closest three
dimers. If we instead increase all the basis sets by one ζ level, we
estimate a basis set incompleteness correction of +0.50 kJ mol−1.
Adding these two effects lets us estimate the simultaneous effect
of basis set incompleteness and core-valence correlation, yielding a
combined correction of +0.22 kJ mol−1. However, we were able to
explicitly compute results using core-valence correlation and larger-
ζ basis sets, yielding an actual combined lattice energy correction of
+0.41 kJ mol−1, demonstrating that these two effects are not quite
addictive.

Fortunately, we found that the baseline method
CCSD(T)/CBS(a[TQ]Z; δ:aDZ) is extremely accurate for all
but the closest three dimers and for computing the three-body
contributions of trimers at all distances when compared to more
accurate CCSD(T)/CBS estimates.

In the course of this work, we have created a very large num-
ber of dimer, trimer, and tetramer CCSD(T)/CBS computations that
can serve as excellent benchmarks for evaluating other strategies for
the accurate and efficient computation of lattice energies. In partic-
ular, the trimers should be valuable in evaluating methods meant to
capture three-body dispersion.

This study has also produced sufficient high-quality data to
improve upon previous theoretical estimates of the lattice energy
of crystalline benzene and its two-, three-, and four-body compo-
nents. Comparing the literature values,13 we discovered that the

common practice of estimating core-valence effects using the sim-
pler MP2 method is not very accurate for the lattice energy of
crystalline benzene and can lead to errors of about −0.5 kJ mol−1.
In addition, the popular T0 approximation44 in local treatments
of electron correlation appears to give errors of ∼0.7 kJ mol−1 for
the three-body contribution to the lattice energy of the first four
trimers. The present estimate of the four-body contribution includes
an expanded number of tetramers at the CCSD(T)/CBS level and
additional tetramers using MP2 and is even smaller (−0.03 kJ mol−1)
compared to the previous literature value (−0.38 kJ mol−1).

Although the present work demonstrates that MP2(+ATM)
can effectively replace CCSD(T)/CBS for more distant dimers and
trimers in a many-body expansion for crystalline benzene, it remains
to be seen if other approximate methods are even more effective for
this purpose and how lattice energies converge and how multi-level
approximations behave for different molecular crystals. In partic-
ular, crystals of molecules with permanent dipole moments are
expected to have larger three- and four-body contributions and to
require longer cutoff distances. Such questions are part of an ongo-
ing investigation in our laboratory, and initial results are reported in
Refs. 43 and 50.

SUPPLEMENTARY MATERIAL

See the supplementary material for non-additive n-body inter-
action energies and lattice energy contributions of the dimers,
trimers, and tetramers for crystalline benzene with all the levels of
theory employed in this study. For trimers, we found faster con-
vergence of the three-body contribution of the lattice energy with
respect to the geometric mean of the intermolecular separations than
the “trimer cutoff.” However, the supplementary information also
provides alternative versions of Figs. 4 and 6 based on the trimer
cutoff criterion. The supplementary material also includes input files
containing the geometries of all dimers and trimers considered in
atomic units.
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