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ABSTRACT
Using the many-body expansion to predict crystal lattice energies (CLEs), a pleasantly parallel process, allows for flexibility in the choice
of theoretical methods. Benchmark-level two-body contributions to CLEs of 23 molecular crystals have been computed using interaction
energies of dimers with minimum inter-monomer separations (i.e., closest contact distances) up to 30 Å. In a search for ways to reduce the
computational expense of calculating accurate CLEs, we have computed these two-body contributions with 15 different quantum chemical
levels of theory and compared these energies to those computed with coupled-cluster in the complete basis set (CBS) limit. Interaction energies
of the more distant dimers are easier to compute accurately and several of the methods tested are suitable as replacements for coupled-
cluster through perturbative triples for all but the closest dimers. For our dataset, sub-kJ mol−1 accuracy can be obtained when calculating
two-body interaction energies of dimers with separations shorter than 4 Å with coupled-cluster with single, double, and perturbative triple
excitations/CBS and dimers with separations longer than 4 Å with MP2.5/aug-cc-pVDZ, among other schemes, reducing the number of
dimers to be computed with coupled-cluster by as much as 98%.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0141872

I. INTRODUCTION

Polymorphs are crystals that have the same molecular com-
position but different packing schemes. Many common crys-
tals, including acetaminophen and aspirin, are polymorphic.1
Currently, the organic molecular crystal with the most fully
characterized polymorphs is 5-methyl-2-[(2-nitrophenyl)amino]-3-
thiophenecabonitrile, also known as ROY, with 12 polymorphs.
Four of those 12 have been discovered since 2019, and many of the
12 can crystallize under the same conditions simultaneously.2,3

Polymorphs exhibit different properties due to their different
intermolecular arrangements. The properties that can be affected
include solubility, which alters the bioavailability of a drug. Antibi-
otics such as oxytetracycline and chloramphenicol palmitate have
at least two different polymorphs, each with differing solubilities.4
The HIV medication ritonavir has five polymorphs. When it was
first released on the market, only one polymorph was known.
After two years, some of the product began failing solubility tests,

indicating the presence of a less soluble form. A second poly-
morph was determined to be the cause of this ∼50% decrease in
solubility.4–6

Due to polymorph-dependent properties, predicting and rank-
ing relative stabilities of polymorphs are a major focus in drug
discovery. The stability of a polymorph is determined by its crystal
lattice energy (CLE), the energy released when infinitely separated
molecules come together to form a crystal.7 A study of eight ROY
polymorphs showed that their CLEs all lie within 8 kJ mol−1 of each
other.8 Another study of 1061 crystals (made from 508 polymor-
phic organic molecules) showed that more than half of the pairs of
polymorphs differed in lattice energy by no more than 2 kJ mol−1;
95% of the pairs differed by less than 7.2 kJ mol−1.9 These small
differences in energy necessitate high accuracy CLE calculations for
ranking polymorphs.

Unfortunately, highly accurate calculations of lattice energies
are extremely expensive due to the size of crystals. The many-body
expansion (MBE) is a promising approach to obtain accurate CLEs
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using high-level methods from quantum chemistry.10–12 This tech-
nique fragments a system into monomers, dimers, trimers, and so
on, up to some limit. The CLE is then the sum of the monomer
deformation energies (the change in monomer energies between the
gas and crystal phase), and the N-body interaction energies among
the dimer, trimers, etc. The reliability of the MBE has been shown
in several molecular crystal studies, and typically it is truncated at
dimer or trimer interaction energy terms.1,13–20 Not only does the
MBE enable a reduction in the system size per energy calculation,
but it also splits the CLE calculation into independent computational
steps, making it pleasantly parallel.

Periodic density functional theory (DFT) methods are widely
used to calculate crystal lattice energies, and they can provide
accurate results when employing a method to account for Lon-
don dispersion interactions, e.g., semiempirical -D corrections.21–23

However, even when using distributed-parallel implementations,
periodic DFT computations can be time-consuming. The MBE may
provide a more computationally efficient approach, and it also
allows for some of the contributions to be computed using high-
level wavefunction methods, which unlike DFT are systematically
improvable toward the ab initio limit. Some groups have employed
a hybrid approach that begins with periodic DFT as a baseline,
and then the most important interactions (e.g., close dimers within
the crystal) can be treated with high-level wavefunction methods,
such as coupled-cluster with single, double, and perturbative triple
excitations [CCSD(T)].24,25

Determining an accurate MBE-based method for the dimer and
trimer calculations has been a point of research for our group and
others. Ringer and Sherrill showed that while second-order pertur-
bation theory (MP2)26 produced poor results for the lattice energy
of crystalline benzene, CCSD(T),27 the “gold standard” of compu-
tational chemistry, in the complete basis set (CBS) limit, was able to
achieve an accuracy of 1 kcal mol−1.14 Since then, the groups of Chan
and Sherrill have computed the lattice energy of crystalline benzene
to sub-kJ mol−1 accuracy.13,28 While this level of accuracy is desirable
for applications like polymorph ranking, unfortunately, the O(N7)
scaling of canonical CCSD(T) makes even these fragment-based cal-
culations computationally infeasible for molecular crystals of many
larger molecules.

Efforts have been made to find lower-scaling methods that
predict CLEs accurately,1 but an avenue less explored is determin-
ing which fragments’ interaction energies must be computed with
CCSD(T)/CBS and which can be determined accurately with a com-
putationally cheaper method. Prior studies suggest that methods
approximate to CCSD(T)/CBS may be used for interaction energies
of dimers and trimers with larger intermolecular distances, with only
a small reduction in accuracy and at a dramatically reduced compu-
tational cost.29,30 Recently, our group explored this range-dependent
approach while calculating the CLE of benzene with sub-kJ mol−1

accuracy.28 Among other conclusions, it was determined that MP2
with a double-ζ basis set was a reasonable choice for calculating
the two-body contribution from medium- to long-range dimers,
defined in that study as the 417 symmetry-unique dimers with inter-
monomer separations (i.e., closest contact distances) between 4 and
30 Å. (Dimers beyond this range could be neglected.) The error
was −1.87 kJ mol−1 relative to CCSD(T)/CBS. For the 278 unique
dimers with separations between 20 and 30 Å, the error was just
−0.10 kJ mol−1. Only three dimers are short range, with separations

less than 4 Å, which demand a high level of theory, such as
CCSD(T)/CBS.28

While MP2 was effective in yielding accurate results at a greatly
reduced computational cost for more distant dimers in the recent
benzene study, it would be valuable to have high-quality benchmark
energies for other molecular crystals and an assessment of additional
approximate quantum chemical methods to see which level of theory
consistently provides the best approximations at the lowest compu-
tational cost. In this study, we present CCSD(T)/CBS benchmark
values for the two-body interaction energies of ice and 22 of the 23
molecular crystals of the X23 dataset.31–33 We then compare the two-
body interaction energies calculated with 15 different levels of theory
to the CCSD(T)/CBS data and examine which of the less expensive
methods achieve low errors for the contribution of the longer-range
dimers to the CLE.

II. THEORETICAL METHODS
A. Dataset

The molecular crystals studied (Fig. 1) are those of the X23
dataset,33 except for anthracene, which was too computationally
expensive. The crystalline infographic files (CIFs) were taken from
the Cambridge Structural Database (CSD). The CSD codes for each
CIF are those used in the C21 publication.32 The revised version of
C21, X23, includes hexamine and succinic acid. For these molecules,
the CSD codes we use are HXMTAM and SUCACB12. We also
include ice Ih (ICSD 27837). These crystal structures have been
determined through either x-ray or neutron diffraction at various
temperatures, ranging from 10 to 298 K. Thus, the inter-monomer
separations are affected by the errors in the experimental location of
the hydrogen atoms. The experimental method and temperature for
each crystal are noted in the appropriate CIF.

B. Two-body energies
The total energy of a molecular cluster can be calculated using

the many-body expansion (MBE),

E total =∑
I

ΔE(1)I +∑
I<J

ΔE(2)IJ + ∑
I<J<K

ΔE(3)IJK + ⋅ ⋅ ⋅ , (1)

where the superscript (N) denotes an N-body term, ΔE(1)I is the
deformation energy of the monomer I, ΔE(2)IJ is the two-body
interaction energy, defined as

ΔE(2)IJ = EIJ − EI − EJ , (2)

and ΔE(3)IJK is the nonadditive three-body interaction energy,

ΔE(3)IJK = EIJK − EI − EJ − EK − ΔE(2)IJ − ΔE(2)IK − ΔE(2)JK . (3)

Calculating the lattice energy of a crystal, the energy needed to
form a crystal from infinitely separated molecules, is complicated
by the fact that crystals can be modeled by infinite solids. If this
is the case, there will be an infinite number of monomers, dimers,
trimers, etc., contributing to the crystal lattice energy (CLE). For
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FIG. 1. The molecules studied are ice and every molecule from the X23 dataset, except anthracene. Each of these 22 molecules is used to form one of the crystals studied,
and two different packings of oxalic acid (α and β) are considered, resulting in 23 crystals.

a finite result, we compute the CLE per monomer or per mole of
monomers. One reference monomer is chosen and is included in all
N-body fragments, which provides the per monomer CLE,

E CLE
I = ΔE(1)I + 1

2∑I<J
ΔE(2)IJ +

1
3 ∑I<J<K

ΔE(3)IJK + ⋅ ⋅ ⋅ , (4)

under the many-body expansion.
Truncating the MBE at the two-body or three-body term typ-

ically provides good accuracy for molecular crystals. This study
focuses only on the two-body term, which has been found to con-
tribute 80%–90% to the total crystal lattice energy.34 All dimers
considered include the reference monomer, and due to the periodic
nature of the crystal, any other dimers should be equivalent to the
ones we choose.

Our group’s open-source software, CrystaLattE,35 is used to
build supercells from CIF files. Here, the monomer geometries are
assumed to be rigid, and we do not include any monomer deforma-
tion term. The software extracts symmetry-unique dimers that have
a minimum inter-monomer separation (closest contact distance)
less than some user-defined distance, as well as their degeneracy
factors, in order to eliminate redundant calculations of symmetry-
equivalent dimers.35 The energetic contribution of each symmetry-
unique dimer to the CLE is the degeneracy factor multiplied by the
dimer interaction energy, defined in Eq. (2), then divided by 2 for a
per monomer contribution. We sum over these per monomer con-
tributions to obtain a partial crystal lattice energy (PCLE), which is
the two-body term in Eq. (4).

C. Benchmark calculations
For the benchmark calculations, CrystaLattE extracted

symmetry-unique dimers that have a minimum monomer separa-
tion less than 30 Å. PSI4 1.4rc3 was used to calculate the interaction
energies.

A focal-point coupled-cluster with single, double, and pertur-
bative triple excitations [CCSD(T)] scheme was used to extrapolate
energies to a complete basis set limit (CBS).36,37 This technique
has been successful with correlation consistent basis sets for non-
covalent interactions.38–40 CCSD(T) in a large basis set may be
approximated by

E(CCSD(T)/Large) ≈ E(MP2/Large) + δCCSD(T)
MP2 /Small (5)

because smaller basis sets can often capture higher-order electron
correlation effects. In Eq. (5), the “large” and “small” refer to relative
size of the basis sets, and the delta term is

δCCSD(T)
MP2 /Small = E(CCSD(T)/Small) − E(MP2/Small). (6)

A two-point extrapolation of the correlation energy typically
provides a sufficient estimate of the CBS limit.41 The large basis
in Eq. (5) uses a two-point extrapolation of Dunning’s augmented,
correlation consistent triple and quadruple-ζ basis sets, aug-cc-
pVTZ and aug-cc-pVQZ,42,43 abbreviated aTZ and aQZ, respec-
tively. The small basis employed was aug-cc-pVDZ (aDZ). For
brevity, we will refer to this specific CCSD(T)/CBS scheme as
CCSD(T)/CBS(a[TQ]Z; δ:aDZ). In our recent study of crystalline
benzene, CCSD(T)/CBS(a[TQ]Z; δ:aDZ) provided the total lattice
energy contribution of dimers with separations between 8 and 14 Å
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TABLE I. Two-body crystal lattice energy contributions (kJ mol−1) and the number of symmetry-unique dimers (Ndim) with a minimum inter-monomer separation, R, less than
30 Å, in addition to those for subsets of R. Percentages of the total two-body energies and dimer counts are listed in parentheses. Energies are computed with
CCSD(T)/CBS(a[TQ]Z; δ:aDZ).

Total R < 4 4 ≤ R < 8 8 ≤ R < 20 20 ≤ R < 30

Energy Ndim Energy Ndim Energy Ndim Energy Ndim Energy Ndim

1,4-cyclohexanedione −97.97 596 −92.11 7 −4.86 20 −0.82 182 −0.17 387
P21 (94.0%) (1.2%) (5.0%) (3.4%) (0.8%) (30.5%) (0.2%) (64.9%)

Acetic acid −75.51 935 −67.29 7 −7.73 24 −0.56 282 0.06 622
Pna21 (89.1%) (0.7%) (10.2%) (2.6%) (0.7%) (30.2%) (−0.1%) (66.5%)

Adamantane −59.05 128 −53.23 2 −4.40 5 −1.31 41 −0.11 80
P4̄21c (90.1%) (1.6%) (7.4%) (3.9%) (2.2%) (32.0%) (0.2%) (62.5%)

Ammonia −36.38 626 −35.39 3 −0.35 12 −0.49 184 −0.15 427
P1 (97.3%) (0.5%) (1.0%) (1.9%) (1.3%) (29.4%) (0.4%) (68.2%)

Benzene −57.99 420 −50.16 3 −6.67 14 −1.05 125 −0.11 278
Pbca (86.5%) (0.7%) (11.5%) (3.3%) (1.8%) (29.8%) (0.2%) (66.2%)

Carbon dioxide −30.11 251 −25.10 1 −4.46 8 −0.52 73 −0.03 169
Pa3̄ (83.4%) (0.4%) (14.8%) (3.2%) (1.7%) (29.1%) (0.1%) (67.3%)

Cyanamide −77.56 1463 −71.61 9 −5.28 30 −0.66 428 −0.01 996
Pbca (92.3%) (0.6%) (6.8%) (2.1%) (0.9%) (29.3%) (0.0%) (68.1%)

Cytosine −166.28 690 −155.08 7 −5.04 18 −6.07 215 −0.09 450
P212121 (93.3%) (1.0%) (3.0%) (2.6%) (3.7%) (31.2%) (0.1%) (65.2%)

Ethyl carbamate −82.04 977 −80.26 12 −0.57 24 −1.14 301 −0.07 640
P1̄ (97.8%) (1.2%) (0.7%) (2.5%) (1.4%) (30.8%) (0.1%) (65.5%)

Formamide −76.76 1534 −77.07 9 1.81 34 −0.95 450 −0.55 1041
P21/n (100.4%) (0.6%) (−2.4%) (2.2%) (1.2%) (29.3%) (0.7%) (67.9%)

Hexamine −87.13 40 −82.93 2 −2.45 2 −1.61 14 −0.13 22
I4̄3m (95.2%) (5.0%) (2.8%) (5.0%) (1.9%) (35.0%) (0.2%) (55.0%)

Ice −34.05 1483 −34.05 6 0.24 32 −0.23 434 −0.01 1011
P63cm (100.0%) (0.4%) (−0.7%) (2.2%) (0.7%) (29.3%) (0.0%) (68.2%)

Imidazole −93.30 1070 −92.30 10 2.55 27 −3.61 323 0.06 710
P21/c (98.9%) (0.9%) (−2.7%) (2.5%) (3.9%) (30.2%) (−0.1%) (66.4%)

Naphthalene −84.43 386 −75.65 5 −6.83 11 −1.83 123 −0.13 247
P21/a (89.6%) (1.3%) (8.1%) (2.8%) (2.2%) (31.9%) (0.2%) (64.0%)

Oxalic acid α −108.25 595 −96.81 4 −11.07 15 −0.26 179 −0.12 397
Pcab (89.4%) (0.7%) (10.2%) (2.5%) (0.2%) (30.1%) (0.1%) (66.7%)

Oxalic acid β −126.70 712 −114.86 5 −10.26 17 −1.49 218 −0.09 472
P21/c (90.7%) (0.7%) (8.1%) (2.4%) (1.2%) (30.6%) (0.1%) (66.3%)

Pyrazine −63.04 319 −57.80 4 −4.39 10 −0.76 97 −0.08 208
Pmnn (91.7%) (1.3%) (7.0%) (3.1%) (1.2%) (30.4%) (0.1%) (65.2%)

Pyrazole −66.79 1269 −58.22 10 −7.87 34 −0.77 381 0.06 844
P21cn (87.2%) (0.8%) (11.8%) (2.7%) (1.1%) (30.0%) (−0.1%) (66.5%)

Succinic acid −133.87 525 −121.15 5 −11.76 18 −0.87 162 −0.09 340
P121/a1 (90.5%) (1.0%) (8.8%) (3.4%) (0.7%) (30.9%) (0.1%) (64.8%)
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TABLE I. (Continued.)

Total R < 4 4 ≤ R < 8 8 ≤ R < 20 20 ≤ R < 30

Energy Ndim Energy Ndim Energy Ndim Energy Ndim Energy Ndim

Triazine −58.36 199 −53.61 3 −3.67 8 −1.02 63 −0.08 125
R3̄c (91.8%) (1.5%) (6.3%) (4.0%) (1.7%) (31.7%) (0.1%) (62.8%)

Trioxane −60.60 256 −54.17 3 −3.95 8 −2.48 75 0.00 170
R3c (89.4%) (1.2%) (6.5%) (3.1%) (4.1%) (29.3%) (0.0%) (66.4%)

Uracil −127.55 858 −116.52 9 −12.16 24 1.37 262 −0.24 563
P21/a (91.4%) (1.0%) (9.5%) (2.8%) (−1.1%) (30.5%) (0.2%) (65.6%)

Urea −115.56 311 −113.18 5 −2.76 8 −0.50 101 0.89 197
P4̄21m (97.9%) (1.6%) (2.4%) (2.6%) (0.4%) (32.5%) (−0.8%) (63.3%)

within 0.01 kJ mol−1 of CCSD(T)/CBS(a[Q5]Z; δ:aTZ) results. For
separations of R ≤ 4 Å and 4 < R ≤ 8, the errors were 0.50 and
0.02 kJ mol−1, respectively.28

Additionally, for CCSD(T) computations, we employed the
frozen natural orbital approximation with the default occupa-
tion number cutoff of 10−6,44 and the convergence criteria for
energy and self-consistent field (SCF) density were set to 10−10

a.u. The density-fitting approximation was used for SCF and CC.
All calculations included the counterpoise correction of Boys and
Bernardi.45,46

D. Approximate methods
A variety of density functional theory (DFT) and wavefunction

methods were tested for their accuracy of approximating the
two-body interaction energy. The methods include B3LYP-D3BJ,47

B97-D3BJ, B97-D,21,48 HF-3c,49 MP2.5,50 MP2-D,51 MP2,26

PBE-D3BJ,52,53 PBEh-3c,54 and SAPT0.55,56 The counterpoise cor-
rection of Boys and Bernardi was included with all methods except
those for which a counterpoise correction is already effectively
included as part of the procedure: HF-3c, PBEh-3c,57 and SAPT0.
B97-D includes Grimme’s D2 correction, and -D3BJ refers to his D3
correction with Becke–Johnson damping.21–23

In general, the methods tested have the correct physics to
describe intermolecular interactions with good accuracy and thus to
compute the two-body contribution to crystal lattice energies reli-
ably. DFT partially incorporates the effects of electron correlation
through its approximate exchange–correlation models, and thus
it should provide reasonably accurate electron densities, which in
turn will mean that interaction energy computations will effectively
capture the underlying electrostatics, induction/polarization, and
short-range exchange-repulsion effects. Density functional approx-
imations do not typically capture long-range electron correlation
effects necessary to model London dispersion interactions, but that
is remedied here by the use of semiempirical -D corrections. The
MP2 methods will likewise appropriately include electron correla-
tion effects on electrostatics, induction/polarization, and exchange-
repulsion, and will further appropriately describe long-range elec-
tron correlation leading to London dispersion interactions. At short
intermolecular distances, correlations between pairs of electrons,

and between three electrons simultaneously, will start to contribute
to the interaction energy, and MP2 does not include such effects,
so it will become less accurate at these distances. Similarly, standard
correlation potentials in density functional theory may also become
less accurate at short intermolecular distances. Thus, we expect the
largest errors to come from the dimers with the shortest intermolec-
ular contacts (at the same time, these will also contribute the largest
interaction energies).

SAPT0 is symmetry-adapted perturbation theory based on
a Hartree–Fock description of the monomers. Thus, it neglects
electron correlation corrections to the monomer electron densi-
ties before those densities interact through electrostatics, induc-
tion/polarization, and exchange-repulsion (it does, however, contain
an MP2-like model of intermolecular London dispersion interac-
tions). The lack of intramolecular electron correlation terms would,
in principle, make it less reliable than the MP2-like or DFT-
D approaches. However, we have often found good performance
for SAPT0 when paired with modest basis sets like aug-cc-pVDZ
or jun-cc-pVDZ (which drops the diffuse functions from aug-cc-
pVDZ on H atoms and the highest angular momentum functions
on heavy atoms)58 due to a favorable cancellation of errors.59

Like the other methods considered, the approximations inherent
in SAPT0 will become less appropriate at short intermolecular
distances.

Finally, both HF-3c and PBEh-3c are semiempirical methods
that use prescribed small basis sets that may lead to inaccurate
electrostatic, induction/polarization, and exchange-repulsion con-
tributions to the interaction energy of a dimer. However, they
compensate for this deficiency by the inclusion of short-range basis
set incompleteness and superposition corrections, and they include
London dispersion contributions through a semiempirical -D cor-
rection. HF-3c has previously been shown to provide fairly accurate
results for molecular crystals.35,60,61

MP2, MP2-D, MP2.5, and SAPT0 were tested with both aDZ
and jun-cc-pVDZ (jDZ) basis sets. Only aDZ basis sets were used
for B3LYP-D3BJ, B97-D3BJ, B97-D, and PBE-D3BJ. Additionally,
PBE-D3BJ was tested with the Karlsruhe basis set def2-TZVP,
which we denote as TZVP.62 Default basis sets were used for
HF-3c and PBEh-3c. The default grid in PSI4 (i.e., 75 radial and 302
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spherical points) was used in all DFT calculations with the exception
of PBEh-3c, where radial and spherical points were set to 99 and 590,
respectively.

When comparing the relative error of these methods to
CCSD(T)/CBS(a[TQ]Z; δ:aDZ), only dimers with a minimum inter-
monomer separation less than 20 Å were used. While we could have
considered dimers with separations up to 30 Å, we found that the
dimers with separations between 20 and 30 Å only contributed up to
0.2% of the two-body lattice energy in 20 of the 23 molecules tested,
as shown in Table I. For most of the crystals, the neglected longer-
range dimers (20 ≤ R < 30 Å) are only worth about 0.15 kJ mol−1

or less, although in a few cases they contribute more, up to a maxi-
mum of 0.89 kJ mol−1 in the case of urea. Thus, we decided to ignore
the dimers with inter-monomer separations of 20 Å and greater, in
the study of approximate methods, to greatly reduce the number

of computations that would accumulate from such a large number
of dimers in this separation range (and the significant number of
approximate methods considered).

Nearly all computations were performed with various versions
of PSI4:63 1.4rc3, 1.4.1, and 1.5, and there are no notable differences
in each PSI4 version listed pertaining to this project. Convergence
criteria were set identically to those of the benchmark compu-
tations. The density-fitting approximation was employed for SCF
and perturbation theory computations. For PBEh-3c calculations of
hexamine dimers, Orca version 5.0.164 was used with defgrid3. Hex-
amine computations with this method in PSI4 exhibited very small
systematic errors that accumulated when closely examining CLEs.
This is apparently due to a bug in the implementation of this method
in PSI4, or the interface to the underlying libXC library,65 which we
were unable to trace as of this writing.

FIG. 2. Cumulative partial crystal lattice energy (kJ mol−1) of four crystals as dimers with longer inter-monomer separations are included. Interaction energies are calculated
with CCSD(T)/CBS(a[TQ]Z; δ:aDZ). The gray bars are 1 kJ mol−1 above and below the final PCLE. The green box highlights a range of 1 kJ mol−1 around the final PCLE
(±0.5 kJ mol−1).
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III. RESULTS
A. Benchmark energies

For the 23 crystals studied, we first computed the con-
tributions to the crystal lattice energies from the dimers
with an inter-monomer separation, R, less than 30 Å using
CCSD(T)/CBS(a[TQ]Z; δ:aDZ). A recent report of SAPT0 calcula-
tions on the present dataset showed that two-body contributions to
CLEs from dimers with R < 60 Å converged to within 1 kJ mol−1

when accumulating interactions of dimers only up to R = 30 Å,
and to within 0.5 kJ mol−1 for all but three crystals: cyanamide,
cytosine, and urea.66 Figure 2 shows the cumulative two-body
CCSD(T)/CBS(a[TQ]Z; δ:aDZ) CLE as dimers with longer inter-
monomer distances are included for acetic acid (polar), adamantane
(nonpolar), imidazole (polar, aromatic), and benzene (nonpolar,
aromatic). Similar figures for all other crystals in the dataset are
included in the supplementary material. From these figures, we
see that contributions from longer-range dimers are small but
significant when aiming for high accuracy crystal lattice energies.

The calculated two-body contributions, from dimers with
R < 30 Å, for each crystal are reported in Table I, in addition to the
number of symmetry-unique dimers included for each crystal. These
values are also divided into subsets corresponding to ranges of mini-
mum inter-monomer separations. The short-range dimers (R < 4 Å)
only comprise between 0.4% and 5.0% of dimers with separations
less than 30 Å, yet their contribution to the two-body PCLE is
more than 83% in all molecules and over 90% in the majority of
cases studied. This also supports the idea that the closest dimers
should be given priority when choosing which should be computed
with CCSD(T)/CBS. The energetic contributions of the mid-range
dimers (4 ≤ R < 8 Å) are less than 15% for each crystal. Although
the number of dimers in each range subset increases rapidly, due
to the increasing volume of shells at distance R from the center of
the reference monomer, there is a drastic decrease in the energetic

contributions from long-range dimers, whose inter-monomer sepa-
rations are between 8 and 20 Å. The 75 long-range dimers of trioxane
contribute 4.1% to the PCLE, the maximum percent contribution of
long-range dimers, whereas for oxalic acid α, 179 long-range dimers
contribute 0.2% of the PCLE. The subset for the 20 ≤ R < 30 Å
range contains at least 62% of the dimers for each crystal, yet it
only contributes energetically up to 0.8% in the case of urea and
0.1%–0.2% in the majority of cases studied. The largest energetic
contributions from this subset, those greater than 0.2 kJ mol−1,
are from some of the more polar molecules: formamide, urea, and
uracil. This can be attributed partially to slow convergence of the
electrostatic energy with respect to inter-monomer distance, which
can also be used to explain the noise in Fig. 2. Range-dependent
convergence of electrostatics, exchange, induction, and dispersion
for each of these crystals have been reported recently by our
group.66

B. Performance of approximate methods
With relevant benchmark data, 15 levels of theory approximate

to CCSD(T)/CBS are tested for their accuracy in calculating the two-
body lattice energy contributions for each of the 23 crystals. Timings
are shown in Fig. 3, where the wall time needed to compute the
interaction energy of an adamantane dimer with each level of the-
ory is compared. We arbitrarily chose an adamantane dimer that
has an inter-monomer separation of ∼7 Å after observing no cor-
relation between inter-monomer separation and computation wall
time. All methods tested, excluding MP2.5, returned the interac-
tion energy in less than 5 min on 14 cores of an Intel i9-10980XE
processor using PSI4 1.4rc3.63 HF-3c is the least expensive method
studied and calculates the adamantane dimer’s interaction energy
in just 9 s on 14 cores. Existing studies on the X23 dataset have
shown that HF-3c performs similarly to some dispersion-corrected
DFT methods.60,61 MP2.5 is by far the most expensive approximate

FIG. 3. Wall times (seconds) of cal-
culating the interaction energy of an
adamantane dimer with a minimum inter-
monomer separation of 6.997 Å using
PSI4 1.4rc3 and 14 cores of an Intel i9-
10980XE processor. The gray shaded
region represents 1 min. This calculation
with CCSD(T)/CBS(a[TQ]Z; δ:aDZ) has
a wall time of ∼2.5 days.
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method considered, taking 1 h to complete with the aDZ basis set
and 15 min with jDZ. Still, all methods are drastically less expen-
sive than CCSD(T)/CBS(a[TQ]Z; δ:aDZ), which has a wall time of
2 days, 13 h, and 17 min for the corresponding calculation.

Errors for calculating the two-body contribution with the 15
low-cost levels of theory relative to CCSD(T)/CBS(a[TQ]Z; δ:aDZ)
are shown in the left panel of Fig. 4. For the error analysis study,
given the very small contribution from dimers 20 ≤ R < 30 Å, and
the large number of them, we limited ourselves only to the significant
dimers, R < 20 Å. Nevertheless, we strongly expect the reliability of
various methods in the neglected range (20 ≤ R < 30 Å) to be at least
as good as in the range 8 ≤ R < 20 Å. In general, it appears that more
distant dimers are much easier to model with more approximate
methods—as we have already observed for crystalline benzene28 and
as we discuss in more detail below.

The left panel of Fig. 4 reports errors in the two-body crystal
lattice energy when using each approximate method rather than the
benchmark-level coupled-cluster. The absolute errors range from
0.1 kJ mol−1 (cytosine with PBE-D3BJ/aDZ) to 50.6 kJ mol−1 (suc-
cinic acid with MP2-D/jDZ). The three darkest columns correspond
to the use of the smallest standard basis sets considered here, jun-
cc-pVDZ. (HF-3c and PBEh-3c use even smaller basis sets, but those

methods are tuned specifically for their associated basis sets.) Over-
all, the jDZ basis sets, which are used for only MP2, MP2-D, and
MP2.5, return some especially large errors, up to 50.6 kJ mol−1, sig-
naling that these levels of theory tend to underbind the dimers of
this dataset. The largest of these errors tend to be associated with
molecules containing carbonyl groups (e.g., 1,4-cyclohexanedione,
cytosine, ethyl carbamate, formamide, oxalic acid, succinic acid,
uracil, and urea). We hypothesize that diffuse d functions (absent
in the jDZ basis set but present in aDZ) are important for comput-
ing accurate MP2 interaction energies in these systems. Using the
aDZ basis sets instead alleviates some error, reducing the maximum
error to 23.8 kJ mol−1, but these methods still tend to underbind.
The DFT methods tend to overbind, resulting in negative interaction
energy errors. Interestingly, SAPT0/aDZ overbinds, but switching to
the jDZ basis set results in underbound dimers.

Some of the largest errors appear for succinic acid, oxalic acid
(α and β), and cytosine. All four of these crystals have dimers with
closest contact separations between 1 and 2 Å. Due to this obser-
vation, we compared the closest intermolecular contact within each
crystal to each crystal’s maximum PCLE error (over all approxi-
mate methods). Figure S-8 in the supplementary material shows no
correlation between the two.

FIG. 4. Errors (kJ mol−1) in the two-body crystal lattice energy contribution computed with less expensive methods, relative to CCSD(T)/CBS(a[TQ]Z; δ:aDZ). Dimers
contributing to the energy calculations have minimum monomer separations, R, less than 20 Å (left) and between 3 and 20 Å (right).
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As stated previously, it has been suggested that methods
approximate to CCSD(T)/CBS may be appropriate for long-range
dimers, only reducing accuracy a small amount and certainly reduc-
ing computational cost. Therefore, we have computed PCLE errors
under a range-dependent scheme. We compute the interaction ener-
gies of dimers with separations between 3 and 20 Å with the
low-cost methods and allow those dimers with separations less than
3 to be computed with CCSD(T)/CBS. We chose 3 Å to be the
switchover distance because all of the crystals, except crystalline
carbon dioxide, have some (but very few) dimers with separations
below this distance, keeping the number of dimers to be computed
with CCSD(T)/CBS low. Carbon dioxide has no dimers with sep-
arations below 3 Å. For each of the 23 crystals, no more than
nine symmetry-unique dimers were computed with CCSD(T)/CBS.
(A detailed breakdown of dimer counts is included in the
supplementary material.) Upon implementing this switchover dis-
tance of 3 Å, there resulted a notable decrease in errors compared
to computing all dimers with the approximate method. Specific
errors for each crystal/method combination can be seen in the right
panel of Fig. 4. The range of absolute errors reduces from 0.1 to
50.6 kJ mol−1 (when computing all dimers R < 20 Å with approx-
imate methods) to 0.0(02)–18.6 kJ mol−1, and the levels of theory
tend to maintain overbinding or underbinding predictions. The
crystal with the largest long-range errors is CO2; however, this is
simply because the nearest-neighbor dimer in CO2 has a closest con-
tact distance between 3 and 4 Å (as previously discussed) and is
included in the right panel of Fig. 4. Among the crystals with the
next-largest errors, several have large molecular dipole moments:
for example, cytosine, formamide, and uracil (dipole moments for
these molecules are available in the supplementary material of
Ref. 66). However, large errors are also found for succinic acid,
which has a small dipole moment, and oxalic acid β, which has a zero
dipole moment (although these molecules do have polar groups and

nonzero quadrupole moments). Overall, we do not see a clear corre-
lation between the molecular structure and which crystals exhibit the
largest errors in the right-hand panel of Fig. 4, apart from the pre-
dominance of carbonyl groups in the systems with the largest errors,
especially for MP2-type methods with the truncated jun-cc-pVDZ
basis set, as already noted.

Mean absolute errors (MAEs) for each method, averaged over
all 23 crystals, are presented in Fig. 5 for both distance ranges (0–20
and 3–20 Å). When considering all dimers, R < 20 Å, the lowest
MAEs hover around 4–5 kJ mol−1 with B3LYP-D3BJ, PBE-D3BJ,
PBEh-3c, and SAPT0. Excluding those dimers with R < 3 Å returns
MAEs less than 5 kJ mol−1 for almost all methods. B3LYP-D3BJ,
PBE-D3BJ, and PBEh-3c continue to have the lowest MAEs, around
1 kJ mol−1. MAE values are also tabulated in the supplementary
material.

MP2-type methods perform well despite our use of smaller
basis sets (jDZ and aDZ). Post-Hartree–Fock methods like MP2
tend to be fairly sensitive to basis set, and this is certainly true
for intermolecular interactions. However, this basis set sensitiv-
ity decreases rapidly with intermolecular separation,28,67–69 allowing
accurate results to be obtained for the more distant dimers despite
the use of small basis sets.

C. Range dependence of approximate methods
With the present results confirming that approximate meth-

ods may be better suited to compute interaction energies of dimers
with longer inter-monomer separations rather than shorter, we
aimed to find certain switchover distances where calculating inter-
action energies of dimers with separations longer than that distance
with an approximate method would not greatly sacrifice accuracy.
Specifically, we determined such distances where using approximate
methods past that distance (up to inter-monomer separations of

FIG. 5. Absolute errors (kJ mol−1) in the
two-body crystal lattice energy contribu-
tion for each method, averaged over the
23 crystals studied. Dimers contributing
to the energy calculations have minimum
monomer separations, R, less than 20 Å
or between 3 and 20 Å.
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TABLE II. Minimum monomer separations, R, at which a non-benchmark method is
used to compute interaction energies of dimers with separations longer than R and
desired accuracy of the two-body contribution to the lattice energy is achieved for
all systems studied. Error is relative to CCSD(T)/CBS(a[TQ]Z; δ:aDZ). Separations
denoted with x indicate that the method cannot achieve the listed accuracy for any
cutoff R < 20 Å.

Method Error (kJ mol−1)

<4 <1 <0.5 <0.1

B3LYP-D3BJ/aDZ 3 5 7 16
B97-D3BJ/aDZ 4 7 7 14
B97-D/aDZ 5 10 13 18
HF-3c/MINIX 4 10 16 x
MP2.5/aDZ 4 4 6 10
MP2.5/jDZ 4 7 8 18
MP2-D/aDZ 4 6 7 12
MP2-D/jDZ 4 7 9 14
MP2/aDZ 4 8 10 16
MP2/jDZ 4 7 9 15
PBE-D3BJ/TZVP 3 5 7 17
PBE-D3BJ/aDZ 4 5 7 14
PBEh-3c/MSVP 3 14 x x
SAPT0/aDZ 4 7 16 x
SAPT0/jDZ 4 9 16 x

20 Å) would return errors around 4, 1, 0.5, and 0.1 kJ mol−1 for the
two-body contribution in all 23 crystals. These switchover distances
are listed in Table II, and dimers with closest inter-monomer dis-
tances below the switchover distance would still be computed with
CCSD(T)/CBS. For example, for any of the crystals considered, com-
puting dimers with separations R < 3 Å with CCSD(T)/CBS(a[TQ]Z;
δ:aDZ) and dimers with 3 ≤ R < 20 Å with B3LYP-D3BJ/aDZ, PBE-
D3BJ/TZVP, or PBEh-3c produces an error less than 4 kJ mol−1

relative to the benchmark CCSD(T)/CBS(a[TQ]Z; δ:aDZ) values for
R < 20 Å. Here, 3 Å is considered the switchover distance.

While closest contact separations are presented here, it is also
helpful to consider the switchover distances in terms of nearest-
neighbor interactions. Generally, for molecular crystals, nearest-
neighbor molecules lie within a 4 Å radius of the asymmetric
unit, and one can expect there to be 10–15 nearest neighbors.70,71

Using these definitions, we predict that using a specific a switchover
distance of 3 Å will have most, but possibly not all, of the nearest-
neighbor interactions computed with CCSD(T). Switchover dis-
tances larger than 3 Å, presented later, will be more likely to capture
all of the nearest-neighbor interactions and maybe even next-nearest
interactions.

Figure 6 highlights those methods that give errors less than 4, 1,
0.5, and 0.1 kJ mol−1 for all 23 crystals using the specific switchover
distances noted in the figure. These schemes were chosen because
they produced the desired error with the least number of dimers
being computed with CCSD(T)/CBS (according to Table II), there-
fore keeping costs low. DFT methods B3LYP-D3BJ, PBE-D3BJ, and
PBEh-3c succeed in keeping errors below 4 kJ mol−1 for all crys-
tals with a switchover distance at 3 Å. This distance corresponds to
calculating between 89% and 100% of the symmetry-unique dimers,

depending on the crystal, with one of the three previously men-
tioned DFT methods, and only the remaining fraction of dimers (the
closest ones) with CCSD(T)/CBS. Figure S-2 of the supplementary
material provides the specific absolute errors per crystal when calcu-
lating each crystal’s two-body lattice energy with each of these DFT
methods after a switchover distance of 3 Å, rather than the mean
absolute error.

For PCLE errors less than 1, 0.5, and 0.1 kJ mol−1, MP2.5/aDZ
outperforms the other methods. It consistently allows for a cut-
off sooner than other methods, reducing the number of dimers
that need to be computed with CCSD(T)/CBS and therefore reduc-
ing central processing unit (CPU) time. The good performance of
MP2.5 is perhaps not surprising as it is the most computation-
ally sophisticated method considered here short of the benchmark
CCSD(T)/CBS results, and it has previously been shown to be reli-
able for non-covalent interactions.72–75 In the event that one would
want a method that is cheaper than MP2.5, Fig. 6 also includes
other methods that yield good results at low computational cost.
For an error less than 1 kJ mol−1, B3LYP-D3BJ and PBE-D3BJ can
be used for dimers with inter-monomer separations between 5 and
20 Å. A switchover distance of 7 Å must be used to reduce the
error to less than 0.5 kJ mol−1. B3LYP-D3BJ, B97-D3BJ, MP2-D,
and PBE-D3BJ are all possible choices, while the lowest MAE is that
of PBE-D3BJ/aDZ. (MAEs are listed in the supplementary material.)
Finally, MP2-D may be used for dimers with separations longer than
12 Å to compute a PCLE with an error less than 0.1 kJ mol−1 relative
to the benchmark method.

As previously discussed, MP2, a very common method, was
chosen when applying this two-layer approach to benzene in our
group’s recent study.28 The current study reveals that this was a fine
choice, but there are other methods that will yield a lower error. If
MP2/aDZ were the level of theory used with a switchover distance
of 3 Å, 21 of the 23 crystal lattice energies would have an error less
than 4 kJ mol−1. The errors for carbon dioxide and pyrazine are
5.2 and −6.6 kJ mol−1, respectively. Changing the switchover dis-
tances to those considered in Fig. 6 (5, 7, and 12 Å) returns errors
within the cutoffs of Fig. 6 (1, 0.5, and 0.1 kJ mol−1, respectively)
for 20 of the 23 crystals. Benzene, naphthalene, and pyrazine present
larger errors. Naphthalene shows the largest errors: −2.9 kJ mol−1

when using a switchover distance of 5 Å, −1.0 kJ mol−1 for 7 Å,
and −0.2 kJ mol−1 for 12 Å. (Errors for calculating the two-body
lattice energy of each crystal with switchover distances of 3, 5, 7,
and 12 Å to MP2/aDZ are listed in Table S-8 of the supplementary
material.) Using MP2/aDZ in all of the schemes of Fig. 6, instead
of the method listed, resulted in MAEs that were between 1.3 and
2.6 times larger than those shown in Fig. 6. All of the methods
highlighted in Fig. 6 show superior performance to MP2/aDZ for
two-body contributions to the lattice energy and most of them (all
except MP2.5) have a comparable or less expensive computational
cost. Therefore, it is recommended that methods other than MP2 be
used for systems like those studied as they are more reliable for this
dataset.

An interesting case study is the comparison of error con-
vergence between the two polymorphs of oxalic acid. The top
two panels of Fig. 7 show errors in the PCLE, relative to the
final CCSD(T)/CBS PCLE, as the switchover distance between
CCSD(T)/CBS and four approximate methods increases. The errors
of oxalic acid α’s PCLE become close to 1–2 kJ mol−1 around
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FIG. 6. Absolute errors (kJ mol−1) in
the two-body crystal lattice energy con-
tribution for selected methods, aver-
aged over the 23 crystals studied.
The approximate methods are used
to compute all dimers with minimum
inter-monomer separations beyond the
given switchover distances provided in
Table II. Methods in colored region
correspond to those which have less
than the error indicated for every crys-
tal. Slightly larger errors for MP2.5 vs
some other approximate methods are
due to switching over to MP2.5 earlier
(MP2.5 switchover distances noted in
parentheses). The benchmark method is
CCSD(T)/CBS(a[TQ]Z; δ:aDZ).

a switchover distance of 3 Å and converge even tighter as the
switchover distance increases. The results are similar for β, but
MP2.5/aDZ does not achieve a comparable error until ∼4 Å. It
should be noted that ranking polymorph stability depends on the
accuracy of relative energies between crystals rather than the accu-
racy of individual CLEs. The bottom panel of Fig. 7 shows the

convergence of the error in the relative polymorph energy as a func-
tion of the switchover distance. The error in the relative polymorph
energy is also nearly converged by about 4 Å, but it tends to be signif-
icantly smaller in magnitude (generally ∼0.2 kJ mol−1 or less by 4 Å)
than the errors in the PLCEs, especially for MP2.5. For this test
case, even though the errors in the energy difference between the

FIG. 7. Error in two-body CLE, relative
to the final CCSD(T)/CBS PCLE, when
all dimers are considered (R < 20 Å).
CCSD(T)/CBS is used to calculate inter-
action energies of dimers with R less
than the switchover distance (x-axis),
and an approximate method is used for
interaction energies of those dimers with
R longer than the switchover distance.
The top panel is for oxalic acid α only,
the middle is for oxalic acid β, and the
bottom panel shows the relative errors
between the two polymorphs.
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polymorphs are less than the errors in the PCLEs, a switchover dis-
tance of 4 Å provides fairly accurate answers for both individual
PCLEs and relative energies between polymorphs.

For the case that an approximate method is used for all oxalic
acid calculations rather than allowing some of the closest dimers
to be calculated with CCSD(T)/CBS, Fig. S-7 in the supplementary
material shows the error in PCLE as dimers with longer closest
contact distances are included. The figure also shows the error
in the relative energy between these two polymorphs as more
dimers are included. The PCLE returned when dimers R < 20 Å
are included is nearly achieved when dimers R < 7 Å are accounted
for in both polymorphs. One might wonder whether the relative
energy between the polymorphs can be captured by including fewer
dimers than required to converge the individual polymorph lattice
energies. The figure indicates that while the errors in the poly-
morph energy difference initially converge much more quickly with
intermolecular distance than the individual polymorph lattice ener-
gies, oscillations in the energy difference are not fully damped out
until around 7 Å, where the individual polymorph energies also
converge.

Figure 8 shows the substantial reduction of computational
effort for the recommended schemes of Fig. 6. Timings were
obtained for the adamantane dimer of Fig. 3, and from these data
we have estimated the amount of time it would take to compute
all the dimers of adamantane in each of the distance regimes.
Using CCSD(T)/CBS(a[TQ]Z; δ:aDZ) for all 48 symmetry-unique
adamantane dimers (R < 20 Å) would take over 40 000 core-hours
(122 wall-time days using 14 cores), whereas a lattice energy within
1 kJ mol−1 of that result could be obtained by using MP2.5/aDZ past
a switchover distance of 4 Å and CCSD(T)/CBS below 4 Å, which
would take just over 2500 core-hours (about one week of wall time
on 14 cores). If only one approximate method is chosen for longer-
range dimers, and 1, 0.5, or 0.1 kJ mol−1 error is desired, then MP2.5

saves the most computational time of the methods considered. Even
though it is the most expensive of the approximate methods for a
single dimer computation, its increased accuracy for shorter-range
dimers reduces the number of dimers that need to be computed with
CCSD(T)/CBS, a method that is far more computationally expen-
sive. As stated previously, these dimer calculations are independent
of each other. In the event that one could obtain as many nodes
as there are individual dimer calculations, all interaction energies
would be calculated once one CCSD(T)/CBS calculation finishes, no
matter the scheme.

Another option that keeps both errors and computational cost
low would be a three-level scheme that treats short-, medium-,
and long-range dimers each with a different level of theory.
While MP2.5/aDZ returns low errors with medium- to long-range
switchover distances, it would be ideal to treat the long-range dimers
with an even cheaper level of theory due to the large number of
dimers in this range and the considerable cost of MP2.5 relative
to the other approximate methods considered here. We tested a
three-level scheme for benzene such that dimers with R < 4 Å
had interactions calculated with CCSD(T)/CBS(a[TQ]Z; δ:aDZ),
4 ≤ R < 5 Å with MP2.5/aDZ, and R ≥ 5 Å with B3LYP-D3BJ/aDZ.
For benzene, this means that the three-level system reduces the num-
ber of dimers computed with MP2.5/aDZ from 139 to 2. When using
this three-level scheme, the error relative to calculating the interac-
tion energies of R < 20 with CCSD(T)/CBS was 0.09 kJ mol−1. This
is 0.27 kJ mol−1 below the error from calculating the two-body lat-
tice energy with a two-level method of switching over to MP2.5/aDZ
at 4 Å.

We tested additional three-level schemes and found that for all
23 crystals, the PCLE errors were within 1 kJ mol−1 of the CCSD(T)/
CBS PCLE when using the following method/switchover distance
combinations: CCSD(T)/CBS for R < 4, MP2.5/aDZ for 4 ≤ R < 5,
and B3LYP-D3BJ/aDZ, PBE-D3BJ/aDZ, or PBE-D3BJ/TZVP for

FIG. 8. Total computational effort
(core-hours) for calculating the two-body
crystal lattice energy contribution with
CCSD(T)/CBS(a[TQ]Z; δ:aDZ) (“All
Benchmark”) and also different two-level
approaches that utilize the benchmark
level for closer dimers, and various
approximate methods for more distant
dimers, using the switchover distances
provided in Table II. The different sectors
of the graph indicate different error
regimes for the hybrid methods. Timings
were calculated for an adamantane
dimer with a minimum inter-monomer
separation ∼7 Å.
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FIG. 9. Absolute errors (kJ mol−1) in the two-body contributions to the crystal lattice
energies for all 23 crystals using a three-level scheme. Dimers with R < 4 Å are
calculated with CCSD(T)/CBS, 4 ≤ R < 5 Å with MP2.5/aDZ, and R ≥ 5 Å with
each method listed. Green squares represent the MAEs. The benchmark method
is CCSD(T)/CBS(a[TQ]Z; δ:aDZ).

R ≥ 5 Å. Specific errors for each crystal under these three recom-
mended schemes are shown in Fig. 9 as well as MAEs. In addition,
we have shown these errors beside those resulting from using the
two-level level scheme of CCSD(T)/CBS for R < 4 and MP2.5/aDZ
for R ≥ 4 Å. Using B3LYP or PBE for R ≥ 4 Å actually reduces the
maximum and mean absolute errors relative to using MP2.5/aDZ
for all dimers with separations larger than 4 Å.

FIG. 10. Total computational effort (core-hours) for calculating the two-body contri-
bution to adamantane’s CLE with different schemes that result in errors below 1 kJ
mol−1 for all 23 crystals relative to CCSD(T)/CBS. Hatching represents the portion
of core-hours required for the CCSD(T)/CBS computations of each scheme. The
switchover distances are those presented in Figs. 6 and 9.

Finally, timings for all proposed two- and three-level schemes
resulting in PCLE errors below 1 kJ mol−1 for each crystal are shown
in Fig. 10. The switchover distances for the two-level schemes are
those used in Fig. 6, and the switchover distances for the three-
level schemes have been described above. Using a three-level scheme
can result in a 1.9× speedup relative to the two-level DFT schemes.
To achieve the errors of 1 kJ mol−1 with a two-level scheme, the
switchover distance is 5 Å, so all dimers with separations less than
5 Å must be calculated with CCSD(T)/CBS. With the three-level
scheme, those dimers with separations between 4 and 5 Å can be
calculated with MP2.5/aDZ instead—a method much cheaper than
CCSD(T)/CBS—resulting in this speedup.

IV. CONCLUSIONS
For 23 molecular crystals, we have presented benchmark-level

values of the two-body contribution to lattice energies using focal-
point estimates of coupled-cluster theory through perturbative triple
excitations, at the complete basis set [CCSD(T)/CBS] limit. We have
employed a many-body expansion (MBE) approach that obtains the
crystal lattice energy as a sum of individual molecular dimer, trimer,
etc., computations, and in this work we have examined the lead-
ing two-body (dimers) term. The two-body contributions included
dimers with minimum inter-monomer separations less than 30 Å,
and the energy contribution per dimer decreases rapidly as the inter-
monomer separation increases. Based on these benchmark data, we
analyzed how approximate methods perform for the two-body crys-
tal lattice energy contribution. The great majority of the error from
using approximate methods rather than CCSD(T)/CBS comes from
the short-range dimers with close inter-monomer separations, and
therefore we analyzed two-level schemes where dimers with the clos-
est separations were calculated with CCSD(T)/CBS and all other
dimers were calculated with an approximate method. We examined
errors for such approaches as a function of the switchover distance
between CCSD(T)/CBS and the low-level methods and specifically
determined schemes that significantly reduce computational time
while approximating the CCSD(T)/CBS values within 4, 1, 0.5, and
0.1 kJ mol−1 for each crystal.

While DFT methods B3LYP-D3BJ, PBE-D3BJ, and PBEh-3c
return errors less than 4 kJ mol−1 for dimers with separations
between 3 and 20 Å, lower errors can be obtained. Using MP2.5/aDZ
for the long-range dimers, and computing shorter-range dimers
with CCSD(T)/CBS, can return errors between 0.1 and 1 kJ mol−1

depending on the switchover distance between the two meth-
ods. Methods less computationally expensive than MP2.5, such
as MP2-D/aDZ and various DFT methods, can sometimes also
achieve very low errors, but the number of dimers computed with
CCSD(T)/CBS must be increased to achieve target accuracies. Due
to the success of MP2.5/aDZ computing medium- to long-range
interaction energies, three-level schemes were considered that com-
pute short-range dimers with CCSD(T), medium-range dimers
with MP2.5, and long-range dimers with either B3LYP or PBE.
These three-level schemes resulted in a 1.9× speedup relative to
the DFT two-level schemes while still achieving 1 kJ mol−1 error
in the two-body contributions to each of the 23 crystal lattice
energies.

Although we have focused on the two-body terms in the MBE
approach, the general accuracy of the DFT and MP2 methods should
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generally carry over to the context of periodic boundary condi-
tion computations, with the caveat that periodic DFT computations
are typically performed in a plane-wave basis with pseudopoten-
tials rather than with atom-centered Gaussian basis functions, and
so some differences are to be expected on that basis. Of course,
the periodic computations will naturally include three- and higher-
body contributions, which have not been included here, and the
errors from those terms may add to or partially cancel the errors
from the two-body terms. The two-body interactions typically con-
stitute ∼80%–90% of the total crystal lattice energy,34 so an accurate
CLE under the many-body expansion must consider three-body,
and sometimes even four-body, terms. While this study does not
calculate any three- or four-body term, we expect that within the
MBE we could use approximate methods for the medium- to long-
range trimers and tetramers, as evidenced in our recent benzene
study.28

Additionally, this study does not examine polymorphs based on
different molecular conformations (conformational polymorphs).
Some studies suggest that intramolecular conformational ener-
gies are poorly calculated by generalized gradient approximation
(GGA) and hybrid functionals and that obtaining these energies
with wavefunction methods, like MP2 and MP2-D, can greatly
improve the results, but basis sets larger than double-ζ may be
required.8,76,77

SUPPLEMENTARY MATERIAL

The supplementary material contains the crystalline info-
graphic files for each crystal, as well as a report of all dimers,
inter-monomer separations, replica numbers, and interaction ener-
gies for each method. Figures, corresponding to Fig. 2, for all crystals
are provided, in addition to absolute and mean absolute errors for
different error minimizing schemes. CrystaLattE can be accessed at
https://github.com/carlosborca/CrystaLattE.
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